{"title":"脑-肠-微生物组相互作用的进展:信号机制、疾病和治疗意义的全面更新。","authors":"Tien S. Dong , Emeran Mayer","doi":"10.1016/j.jcmgh.2024.01.024","DOIUrl":null,"url":null,"abstract":"<div><p>The complex, bidirectional interactions between the brain, the gut, and the gut microbes are best referred to as the <em>brain gut microbiome system</em>. Animal and clinical studies have identified specific signaling mechanisms within this system, with gut microbes communicating to the brain through neuronal, endocrine, and immune pathways. The brain, in turn, modulates the composition and function of the gut microbiota through the autonomic nervous system, regulating gut motility, secretion, permeability, and the release of hormones impacting microbial gene expression. Perturbations at any level of these interactions can disrupt the intricate balance, potentially contributing to the pathogenesis of intestinal, metabolic, neurologic, and psychiatric disorders. Understanding these interactions and their underlying mechanisms holds promise for identifying biomarkers, as well as novel therapeutic targets, and for developing more effective treatment strategies for these complex disorders. Continued research will advance our knowledge of this system, with the potential for improved understanding and management of a wide range of disorders. This review provides an update on the current state of knowledge regarding this system, with a focus on recent advancements and emerging research areas.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 1","pages":"Pages 1-13"},"PeriodicalIF":7.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000274/pdfft?md5=d4669a02dd3b453d86ad04ae4f48c667&pid=1-s2.0-S2352345X24000274-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in Brain–Gut–Microbiome Interactions: A Comprehensive Update on Signaling Mechanisms, Disorders, and Therapeutic Implications\",\"authors\":\"Tien S. Dong , Emeran Mayer\",\"doi\":\"10.1016/j.jcmgh.2024.01.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex, bidirectional interactions between the brain, the gut, and the gut microbes are best referred to as the <em>brain gut microbiome system</em>. Animal and clinical studies have identified specific signaling mechanisms within this system, with gut microbes communicating to the brain through neuronal, endocrine, and immune pathways. The brain, in turn, modulates the composition and function of the gut microbiota through the autonomic nervous system, regulating gut motility, secretion, permeability, and the release of hormones impacting microbial gene expression. Perturbations at any level of these interactions can disrupt the intricate balance, potentially contributing to the pathogenesis of intestinal, metabolic, neurologic, and psychiatric disorders. Understanding these interactions and their underlying mechanisms holds promise for identifying biomarkers, as well as novel therapeutic targets, and for developing more effective treatment strategies for these complex disorders. Continued research will advance our knowledge of this system, with the potential for improved understanding and management of a wide range of disorders. This review provides an update on the current state of knowledge regarding this system, with a focus on recent advancements and emerging research areas.</p></div>\",\"PeriodicalId\":55974,\"journal\":{\"name\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"volume\":\"18 1\",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352345X24000274/pdfft?md5=d4669a02dd3b453d86ad04ae4f48c667&pid=1-s2.0-S2352345X24000274-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352345X24000274\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352345X24000274","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Advances in Brain–Gut–Microbiome Interactions: A Comprehensive Update on Signaling Mechanisms, Disorders, and Therapeutic Implications
The complex, bidirectional interactions between the brain, the gut, and the gut microbes are best referred to as the brain gut microbiome system. Animal and clinical studies have identified specific signaling mechanisms within this system, with gut microbes communicating to the brain through neuronal, endocrine, and immune pathways. The brain, in turn, modulates the composition and function of the gut microbiota through the autonomic nervous system, regulating gut motility, secretion, permeability, and the release of hormones impacting microbial gene expression. Perturbations at any level of these interactions can disrupt the intricate balance, potentially contributing to the pathogenesis of intestinal, metabolic, neurologic, and psychiatric disorders. Understanding these interactions and their underlying mechanisms holds promise for identifying biomarkers, as well as novel therapeutic targets, and for developing more effective treatment strategies for these complex disorders. Continued research will advance our knowledge of this system, with the potential for improved understanding and management of a wide range of disorders. This review provides an update on the current state of knowledge regarding this system, with a focus on recent advancements and emerging research areas.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.