Jade Stephens, Alexander J Moorhouse, Kai Craenen, Ewald Schroeder, Fotios Drenos, Rhona Anderson
{"title":"关于电离辐射代际影响的人类证据系统回顾。","authors":"Jade Stephens, Alexander J Moorhouse, Kai Craenen, Ewald Schroeder, Fotios Drenos, Rhona Anderson","doi":"10.1080/09553002.2024.2306328","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To provide a synthesis of the published evidence pertaining to the intergenerational health effects of parental preconceptional exposure to ionizing radiation in humans.</p><p><strong>Methods: </strong>The study populations are the descendants of those who were exposed to ionizing radiation prior to conception. A Boolean search identified publications for review in accordance with Office of Health Assessment and Translation guidelines. Initially, a risk of bias assessment was conducted for each published study and relevant data extracted. Information was organized into adverse health outcome groups and exposure situations. To make an assessment from the body of evidence within each group, an initial confidence rating was assigned, before factors including inconsistencies between studies, magnitude of effect, dose response and confounders were considered. From this, 'an effect', 'no effect' or whether the evidence remained 'inadequate' to determine either effect or no effect, was ascertained. This assessment was based primarily upon the author's conclusions within that evidence-base and, by binomial probability testing of the direction of effect reported.</p><p><strong>Results: </strong>2441 publications were identified for review which after screening was reduced to 127. For the majority of the adverse health groups, we find there to be inadequate evidence from which to determine whether the health effect was, or was not, associated with parental preconceptional radiation exposure. This was largely due to heterogeneity between individual study's findings and conclusions within each group and, the limited number of studies within each group. We did observe one health grouping (congenital abnormalities) in occupationally exposed populations, where an increase in effect relative to their controls or large magnitude of effects, were reported, although it is noted that the authors of these studies interpreted their findings as most likely not to be associated with parental radiation exposure.</p><p><strong>Conclusions: </strong>We find there to be a lack of evidence to enable the formal assessment of radiation-related adverse effects in offspring of exposed humans. This is not the same as there being no clear evidence that effects may occur but does infer that if adverse health effects do arise in children of exposed parents, then these effects are small and difficult to reproducibly measure. Inconsistencies in designing studies are unavoidable, however we highlight the need for an element of standardization and, more sharing of primary datasets as part of open access initiatives, in order for future reviews to make reasonable conclusions. Overall, there is a need for future work to ensure comparable measures between studies where possible.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1330-1363"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of human evidence for the intergenerational effects of exposure to ionizing radiation.\",\"authors\":\"Jade Stephens, Alexander J Moorhouse, Kai Craenen, Ewald Schroeder, Fotios Drenos, Rhona Anderson\",\"doi\":\"10.1080/09553002.2024.2306328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To provide a synthesis of the published evidence pertaining to the intergenerational health effects of parental preconceptional exposure to ionizing radiation in humans.</p><p><strong>Methods: </strong>The study populations are the descendants of those who were exposed to ionizing radiation prior to conception. A Boolean search identified publications for review in accordance with Office of Health Assessment and Translation guidelines. Initially, a risk of bias assessment was conducted for each published study and relevant data extracted. Information was organized into adverse health outcome groups and exposure situations. To make an assessment from the body of evidence within each group, an initial confidence rating was assigned, before factors including inconsistencies between studies, magnitude of effect, dose response and confounders were considered. From this, 'an effect', 'no effect' or whether the evidence remained 'inadequate' to determine either effect or no effect, was ascertained. This assessment was based primarily upon the author's conclusions within that evidence-base and, by binomial probability testing of the direction of effect reported.</p><p><strong>Results: </strong>2441 publications were identified for review which after screening was reduced to 127. For the majority of the adverse health groups, we find there to be inadequate evidence from which to determine whether the health effect was, or was not, associated with parental preconceptional radiation exposure. This was largely due to heterogeneity between individual study's findings and conclusions within each group and, the limited number of studies within each group. We did observe one health grouping (congenital abnormalities) in occupationally exposed populations, where an increase in effect relative to their controls or large magnitude of effects, were reported, although it is noted that the authors of these studies interpreted their findings as most likely not to be associated with parental radiation exposure.</p><p><strong>Conclusions: </strong>We find there to be a lack of evidence to enable the formal assessment of radiation-related adverse effects in offspring of exposed humans. This is not the same as there being no clear evidence that effects may occur but does infer that if adverse health effects do arise in children of exposed parents, then these effects are small and difficult to reproducibly measure. Inconsistencies in designing studies are unavoidable, however we highlight the need for an element of standardization and, more sharing of primary datasets as part of open access initiatives, in order for future reviews to make reasonable conclusions. Overall, there is a need for future work to ensure comparable measures between studies where possible.</p>\",\"PeriodicalId\":94057,\"journal\":{\"name\":\"International journal of radiation biology\",\"volume\":\" \",\"pages\":\"1330-1363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of radiation biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2024.2306328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2306328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A systematic review of human evidence for the intergenerational effects of exposure to ionizing radiation.
Purpose: To provide a synthesis of the published evidence pertaining to the intergenerational health effects of parental preconceptional exposure to ionizing radiation in humans.
Methods: The study populations are the descendants of those who were exposed to ionizing radiation prior to conception. A Boolean search identified publications for review in accordance with Office of Health Assessment and Translation guidelines. Initially, a risk of bias assessment was conducted for each published study and relevant data extracted. Information was organized into adverse health outcome groups and exposure situations. To make an assessment from the body of evidence within each group, an initial confidence rating was assigned, before factors including inconsistencies between studies, magnitude of effect, dose response and confounders were considered. From this, 'an effect', 'no effect' or whether the evidence remained 'inadequate' to determine either effect or no effect, was ascertained. This assessment was based primarily upon the author's conclusions within that evidence-base and, by binomial probability testing of the direction of effect reported.
Results: 2441 publications were identified for review which after screening was reduced to 127. For the majority of the adverse health groups, we find there to be inadequate evidence from which to determine whether the health effect was, or was not, associated with parental preconceptional radiation exposure. This was largely due to heterogeneity between individual study's findings and conclusions within each group and, the limited number of studies within each group. We did observe one health grouping (congenital abnormalities) in occupationally exposed populations, where an increase in effect relative to their controls or large magnitude of effects, were reported, although it is noted that the authors of these studies interpreted their findings as most likely not to be associated with parental radiation exposure.
Conclusions: We find there to be a lack of evidence to enable the formal assessment of radiation-related adverse effects in offspring of exposed humans. This is not the same as there being no clear evidence that effects may occur but does infer that if adverse health effects do arise in children of exposed parents, then these effects are small and difficult to reproducibly measure. Inconsistencies in designing studies are unavoidable, however we highlight the need for an element of standardization and, more sharing of primary datasets as part of open access initiatives, in order for future reviews to make reasonable conclusions. Overall, there is a need for future work to ensure comparable measures between studies where possible.