利用西喜马拉雅山亚穆纳河流域的水文气象数据集预测未来的灾害:使用马尔可夫链和 LSTM 方法

Pankaj Chauhan , Muhammed Ernur Akiner , Rajib Shaw , Kalachand Sain
{"title":"利用西喜马拉雅山亚穆纳河流域的水文气象数据集预测未来的灾害:使用马尔可夫链和 LSTM 方法","authors":"Pankaj Chauhan ,&nbsp;Muhammed Ernur Akiner ,&nbsp;Rajib Shaw ,&nbsp;Kalachand Sain","doi":"10.1016/j.aiig.2024.100069","DOIUrl":null,"url":null,"abstract":"<div><p>This research aim to evaluate hydro-meteorological data from the Yamuna River Basin, Uttarakhand, India, utilizing Extreme Value Distribution of Frequency Analysis and the Markov Chain Approach. This method assesses persistence and allows for combinatorial probability estimations such as initial and transitional probabilities. The hydrologic data was generated (<em>in-situ</em>) and received from Uttarakhand Jal Vidut Nigam Limited (UJVNL), and meteorological data was acquired from NASA's archives MERRA-2 product. A total of sixteen years (2005–2020) of data was used to foresee daily Precipitation from 2020 to 2022. MERRA-2 products are utilized as observed and forecast values for daily Precipitation throughout the monsoon season, which runs from July to September. Markov Chain and Long Short-Term Memory (LSTM) findings for 2020, 2021, and 2022 were observed, and anticipated values for daily rainfall during the monsoon season between July and September. According to test findings, the artificial intelligence technique cannot anticipate future regional meteorological formations; the correlation coefficient R<sup>2</sup> is around 0.12. According to the randomly verified precipitation data findings, the Markov Chain model has a success rate of 79.17 percent. The results suggest that extended return periods should be a warning sign for drought and flood risk in the Himalayan region. This study gives a better knowledge of the water budget, climate change variability, and impact of global warming, ultimately leading to improved water resource management and better emergency planning to the establishment of the Early Warning System (EWS) for extreme occurrences such as cloudbursts, flash floods, landslides hazards in the complex Himalayan region.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544124000108/pdfft?md5=e1dfcd7de1eb49b19fe8263917b57055&pid=1-s2.0-S2666544124000108-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Forecast future disasters using hydro-meteorological datasets in the Yamuna river basin, Western Himalaya: Using Markov Chain and LSTM approaches\",\"authors\":\"Pankaj Chauhan ,&nbsp;Muhammed Ernur Akiner ,&nbsp;Rajib Shaw ,&nbsp;Kalachand Sain\",\"doi\":\"10.1016/j.aiig.2024.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research aim to evaluate hydro-meteorological data from the Yamuna River Basin, Uttarakhand, India, utilizing Extreme Value Distribution of Frequency Analysis and the Markov Chain Approach. This method assesses persistence and allows for combinatorial probability estimations such as initial and transitional probabilities. The hydrologic data was generated (<em>in-situ</em>) and received from Uttarakhand Jal Vidut Nigam Limited (UJVNL), and meteorological data was acquired from NASA's archives MERRA-2 product. A total of sixteen years (2005–2020) of data was used to foresee daily Precipitation from 2020 to 2022. MERRA-2 products are utilized as observed and forecast values for daily Precipitation throughout the monsoon season, which runs from July to September. Markov Chain and Long Short-Term Memory (LSTM) findings for 2020, 2021, and 2022 were observed, and anticipated values for daily rainfall during the monsoon season between July and September. According to test findings, the artificial intelligence technique cannot anticipate future regional meteorological formations; the correlation coefficient R<sup>2</sup> is around 0.12. According to the randomly verified precipitation data findings, the Markov Chain model has a success rate of 79.17 percent. The results suggest that extended return periods should be a warning sign for drought and flood risk in the Himalayan region. This study gives a better knowledge of the water budget, climate change variability, and impact of global warming, ultimately leading to improved water resource management and better emergency planning to the establishment of the Early Warning System (EWS) for extreme occurrences such as cloudbursts, flash floods, landslides hazards in the complex Himalayan region.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"5 \",\"pages\":\"Article 100069\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666544124000108/pdfft?md5=e1dfcd7de1eb49b19fe8263917b57055&pid=1-s2.0-S2666544124000108-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544124000108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544124000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在利用频率分析的极值分布和马尔可夫链方法,评估印度北阿坎德邦亚穆纳河流域的水文气象数据。该方法可评估持续性,并可进行组合概率估计,如初始概率和过渡概率。水文数据由 Uttarakhand Jal Vidut Nigam 有限公司(UJVNL)提供(原位),气象数据则来自美国国家航空航天局(NASA)的档案 MERRA-2 产品。共使用了 16 年(2005-2020 年)的数据来预测 2020 年至 2022 年的日降水量。MERRA-2 产品被用作整个季风季节(7 月至 9 月)的日降水量观测值和预测值。马尔可夫链和长短期记忆(LSTM)对 2020 年、2021 年和 2022 年的观测结果以及 7 月至 9 月季风季节的日降水量进行了预测。根据测试结果,人工智能技术无法预测未来的区域气象形式;相关系数 R2 约为 0.12。根据随机验证的降水数据结果,马尔可夫链模型的成功率为 79.17%。结果表明,延长重现期应成为喜马拉雅地区干旱和洪水风险的预警信号。这项研究有助于更好地了解水预算、气候变化变异性和全球变暖的影响,最终改善水资源管理,制定更好的应急计划,在复杂的喜马拉雅地区建立针对云爆、山洪、滑坡等极端事件的预警系统(EWS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecast future disasters using hydro-meteorological datasets in the Yamuna river basin, Western Himalaya: Using Markov Chain and LSTM approaches

This research aim to evaluate hydro-meteorological data from the Yamuna River Basin, Uttarakhand, India, utilizing Extreme Value Distribution of Frequency Analysis and the Markov Chain Approach. This method assesses persistence and allows for combinatorial probability estimations such as initial and transitional probabilities. The hydrologic data was generated (in-situ) and received from Uttarakhand Jal Vidut Nigam Limited (UJVNL), and meteorological data was acquired from NASA's archives MERRA-2 product. A total of sixteen years (2005–2020) of data was used to foresee daily Precipitation from 2020 to 2022. MERRA-2 products are utilized as observed and forecast values for daily Precipitation throughout the monsoon season, which runs from July to September. Markov Chain and Long Short-Term Memory (LSTM) findings for 2020, 2021, and 2022 were observed, and anticipated values for daily rainfall during the monsoon season between July and September. According to test findings, the artificial intelligence technique cannot anticipate future regional meteorological formations; the correlation coefficient R2 is around 0.12. According to the randomly verified precipitation data findings, the Markov Chain model has a success rate of 79.17 percent. The results suggest that extended return periods should be a warning sign for drought and flood risk in the Himalayan region. This study gives a better knowledge of the water budget, climate change variability, and impact of global warming, ultimately leading to improved water resource management and better emergency planning to the establishment of the Early Warning System (EWS) for extreme occurrences such as cloudbursts, flash floods, landslides hazards in the complex Himalayan region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1