基于人工智能的胸部正常组织自动分割和放疗剂量测绘

Jue Jiang , Chloe Min Seo Choi , Joseph O. Deasy , Andreas Rimner , Maria Thor , Harini Veeraraghavan
{"title":"基于人工智能的胸部正常组织自动分割和放疗剂量测绘","authors":"Jue Jiang ,&nbsp;Chloe Min Seo Choi ,&nbsp;Joseph O. Deasy ,&nbsp;Andreas Rimner ,&nbsp;Maria Thor ,&nbsp;Harini Veeraraghavan","doi":"10.1016/j.phro.2024.100542","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Objective assessment of delivered radiotherapy (RT) to thoracic organs requires fast and accurate deformable dose mapping. The aim of this study was to implement and evaluate an artificial intelligence (AI) deformable image registration (DIR) and organ segmentation-based AI dose mapping (AIDA) applied to the esophagus and the heart.</p></div><div><h3>Materials and methods</h3><p>AIDA metrics were calculated for 72 locally advanced non-small cell lung cancer patients treated with concurrent chemo-RT to 60 Gy in 2 Gy fractions in an automated pipeline. The pipeline steps were: (i) automated rigid alignment and cropping of planning CT to week 1 and week 2 cone-beam CT (CBCT) field-of-views, (ii) AI segmentation on CBCTs, and (iii) AI-DIR-based dose mapping to compute dose metrics. AIDA dose metrics were compared to the planned dose and manual contour dose mapping (manual DA).</p></div><div><h3>Results</h3><p>AIDA required ∼2 min/patient. Esophagus and heart segmentations were generated with a mean Dice similarity coefficient (DSC) of 0.80±0.15 and 0.94±0.05, a Hausdorff distance at 95th percentile (HD95) of 3.9±3.4 mm and 14.1±8.3 mm, respectively. AIDA heart dose was significantly lower than the planned heart dose (p = 0.04). Larger dose deviations (&gt;=1Gy) were more frequently observed between AIDA and the planned dose (N = 26) than with manual DA (N = 6).</p></div><div><h3>Conclusions</h3><p>Rapid estimation of RT dose to thoracic tissues from CBCT is feasible with AIDA. AIDA-derived metrics and segmentations were similar to manual DA, thus motivating the use of AIDA for RT applications.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000125/pdfft?md5=0978a92b274beaa5016ea68b04c41752&pid=1-s2.0-S2405631624000125-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based automated segmentation and radiotherapy dose mapping for thoracic normal tissues\",\"authors\":\"Jue Jiang ,&nbsp;Chloe Min Seo Choi ,&nbsp;Joseph O. Deasy ,&nbsp;Andreas Rimner ,&nbsp;Maria Thor ,&nbsp;Harini Veeraraghavan\",\"doi\":\"10.1016/j.phro.2024.100542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Objective assessment of delivered radiotherapy (RT) to thoracic organs requires fast and accurate deformable dose mapping. The aim of this study was to implement and evaluate an artificial intelligence (AI) deformable image registration (DIR) and organ segmentation-based AI dose mapping (AIDA) applied to the esophagus and the heart.</p></div><div><h3>Materials and methods</h3><p>AIDA metrics were calculated for 72 locally advanced non-small cell lung cancer patients treated with concurrent chemo-RT to 60 Gy in 2 Gy fractions in an automated pipeline. The pipeline steps were: (i) automated rigid alignment and cropping of planning CT to week 1 and week 2 cone-beam CT (CBCT) field-of-views, (ii) AI segmentation on CBCTs, and (iii) AI-DIR-based dose mapping to compute dose metrics. AIDA dose metrics were compared to the planned dose and manual contour dose mapping (manual DA).</p></div><div><h3>Results</h3><p>AIDA required ∼2 min/patient. Esophagus and heart segmentations were generated with a mean Dice similarity coefficient (DSC) of 0.80±0.15 and 0.94±0.05, a Hausdorff distance at 95th percentile (HD95) of 3.9±3.4 mm and 14.1±8.3 mm, respectively. AIDA heart dose was significantly lower than the planned heart dose (p = 0.04). Larger dose deviations (&gt;=1Gy) were more frequently observed between AIDA and the planned dose (N = 26) than with manual DA (N = 6).</p></div><div><h3>Conclusions</h3><p>Rapid estimation of RT dose to thoracic tissues from CBCT is feasible with AIDA. AIDA-derived metrics and segmentations were similar to manual DA, thus motivating the use of AIDA for RT applications.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000125/pdfft?md5=0978a92b274beaa5016ea68b04c41752&pid=1-s2.0-S2405631624000125-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的对胸部器官进行放疗(RT)的客观评估需要快速、准确的可变形剂量测绘。本研究的目的是实施和评估一种人工智能(AI)可变形图像配准(DIR)和基于器官分割的 AI 剂量映射(AIDA),并将其应用于食道和心脏。材料和方法对 72 例局部晚期非小细胞肺癌患者进行自动流水线计算,这些患者同时接受了化疗-RT,剂量为 60 Gy(2 Gy 分段)。管道步骤包括(i) 将计划 CT 与第 1 周和第 2 周锥束 CT(CBCT)视场进行自动刚性配准和裁剪,(ii) 对 CBCT 进行人工智能分割,(iii) 基于人工智能-DIR 的剂量映射来计算剂量指标。将 AIDA 剂量指标与计划剂量和手动轮廓剂量绘图(手动 DA)进行比较。食管和心脏分割的平均狄斯相似系数(DSC)分别为0.80±0.15和0.94±0.05,第95百分位数的豪斯多夫距离(HD95)分别为3.9±3.4毫米和14.1±8.3毫米。AIDA 心脏剂量明显低于计划心脏剂量(p = 0.04)。AIDA与计划剂量(N = 26)之间出现较大剂量偏差(>=1Gy)的频率高于手动DA(N = 6)。AIDA 得出的指标和分割结果与手动 DA 相似,因此可将 AIDA 用于 RT 应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence-based automated segmentation and radiotherapy dose mapping for thoracic normal tissues

Background and purpose

Objective assessment of delivered radiotherapy (RT) to thoracic organs requires fast and accurate deformable dose mapping. The aim of this study was to implement and evaluate an artificial intelligence (AI) deformable image registration (DIR) and organ segmentation-based AI dose mapping (AIDA) applied to the esophagus and the heart.

Materials and methods

AIDA metrics were calculated for 72 locally advanced non-small cell lung cancer patients treated with concurrent chemo-RT to 60 Gy in 2 Gy fractions in an automated pipeline. The pipeline steps were: (i) automated rigid alignment and cropping of planning CT to week 1 and week 2 cone-beam CT (CBCT) field-of-views, (ii) AI segmentation on CBCTs, and (iii) AI-DIR-based dose mapping to compute dose metrics. AIDA dose metrics were compared to the planned dose and manual contour dose mapping (manual DA).

Results

AIDA required ∼2 min/patient. Esophagus and heart segmentations were generated with a mean Dice similarity coefficient (DSC) of 0.80±0.15 and 0.94±0.05, a Hausdorff distance at 95th percentile (HD95) of 3.9±3.4 mm and 14.1±8.3 mm, respectively. AIDA heart dose was significantly lower than the planned heart dose (p = 0.04). Larger dose deviations (>=1Gy) were more frequently observed between AIDA and the planned dose (N = 26) than with manual DA (N = 6).

Conclusions

Rapid estimation of RT dose to thoracic tissues from CBCT is feasible with AIDA. AIDA-derived metrics and segmentations were similar to manual DA, thus motivating the use of AIDA for RT applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography Automatic segmentation for magnetic resonance imaging guided individual elective lymph node irradiation in head and neck cancer patients Development of a novel 3D-printed dynamic anthropomorphic thorax phantom for evaluation of four-dimensional computed tomography Technical feasibility of delivering a simultaneous integrated boost in partial breast irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1