{"title":"乳腺癌细胞与 THP-1 衍生巨噬细胞共培养表型试验规程","authors":"Alicja Mazan, Anna A Marusiak","doi":"10.1007/s10911-024-09556-2","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor mass comprises not only cancer cells but also heterogeneous populations of immune and stromal cells, along with the components of the extracellular matrix, collectively called the tumor microenvironment (TME). This diverse population of cells can communicate with each other, which can positively or negatively affect tumor growth and progression to malignancy. The most common type of immune cells in the TME are macrophages. Macrophages continuously differentiate into a broad landscape of tumor-associated macrophages (TAMs) in response to numerous signals from the TME, which makes studies on TAMs quite challenging. Therefore, implementing reliable protocols is a milestone for drawing consistent conclusions about the interactions between cancer cells and TAMs. Here, we provide the details for the polarization of a human leukemia monocytic cell line, THP-1, into M0, M1 and M2 macrophages. We also present a step-by-step protocol for a transwell co-culture using a human breast cancer cell line, HCC1806, and THP-1-derived macrophages. Finally, we describe the colony formation and migration assays performed on the breast cancer cells after the co-culture with macrophages to measure the influence of macrophages on the oncogenic features of cancer cells. In summary, our co-culture-based protocols can be a valuable resource for investigating the interactions between macrophages and cancer cells.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"4"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858929/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protocols for Co-Culture Phenotypic Assays with Breast Cancer Cells and THP-1-Derived Macrophages.\",\"authors\":\"Alicja Mazan, Anna A Marusiak\",\"doi\":\"10.1007/s10911-024-09556-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor mass comprises not only cancer cells but also heterogeneous populations of immune and stromal cells, along with the components of the extracellular matrix, collectively called the tumor microenvironment (TME). This diverse population of cells can communicate with each other, which can positively or negatively affect tumor growth and progression to malignancy. The most common type of immune cells in the TME are macrophages. Macrophages continuously differentiate into a broad landscape of tumor-associated macrophages (TAMs) in response to numerous signals from the TME, which makes studies on TAMs quite challenging. Therefore, implementing reliable protocols is a milestone for drawing consistent conclusions about the interactions between cancer cells and TAMs. Here, we provide the details for the polarization of a human leukemia monocytic cell line, THP-1, into M0, M1 and M2 macrophages. We also present a step-by-step protocol for a transwell co-culture using a human breast cancer cell line, HCC1806, and THP-1-derived macrophages. Finally, we describe the colony formation and migration assays performed on the breast cancer cells after the co-culture with macrophages to measure the influence of macrophages on the oncogenic features of cancer cells. In summary, our co-culture-based protocols can be a valuable resource for investigating the interactions between macrophages and cancer cells.</p>\",\"PeriodicalId\":16413,\"journal\":{\"name\":\"Journal of Mammary Gland Biology and Neoplasia\",\"volume\":\"29 1\",\"pages\":\"4\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mammary Gland Biology and Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10911-024-09556-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-024-09556-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Protocols for Co-Culture Phenotypic Assays with Breast Cancer Cells and THP-1-Derived Macrophages.
Tumor mass comprises not only cancer cells but also heterogeneous populations of immune and stromal cells, along with the components of the extracellular matrix, collectively called the tumor microenvironment (TME). This diverse population of cells can communicate with each other, which can positively or negatively affect tumor growth and progression to malignancy. The most common type of immune cells in the TME are macrophages. Macrophages continuously differentiate into a broad landscape of tumor-associated macrophages (TAMs) in response to numerous signals from the TME, which makes studies on TAMs quite challenging. Therefore, implementing reliable protocols is a milestone for drawing consistent conclusions about the interactions between cancer cells and TAMs. Here, we provide the details for the polarization of a human leukemia monocytic cell line, THP-1, into M0, M1 and M2 macrophages. We also present a step-by-step protocol for a transwell co-culture using a human breast cancer cell line, HCC1806, and THP-1-derived macrophages. Finally, we describe the colony formation and migration assays performed on the breast cancer cells after the co-culture with macrophages to measure the influence of macrophages on the oncogenic features of cancer cells. In summary, our co-culture-based protocols can be a valuable resource for investigating the interactions between macrophages and cancer cells.
期刊介绍:
Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function.
Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.