Whitney M. Longmate , Emily Norton , Giesse Albeche Duarte , Lei Wu , Mathieu R. DiPersio , John M. Lamar , C. Michael DiPersio
{"title":"角质细胞整合素α3β1通过YAP/TEAD依赖机制诱导巨噬细胞刺激因子CSF-1的表达。","authors":"Whitney M. Longmate , Emily Norton , Giesse Albeche Duarte , Lei Wu , Mathieu R. DiPersio , John M. Lamar , C. Michael DiPersio","doi":"10.1016/j.matbio.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>The development of wound therapy targeting integrins is hampered by inadequate understanding of integrin function in cutaneous wound healing and the wound microenvironment. Following cutaneous injury, keratinocytes migrate to restore the skin barrier, and macrophages aid in debris clearance. Thus, both keratinocytes and macrophages are critical to the coordination of tissue repair. Keratinocyte integrins have been shown to participate in this coordinated effort by regulating secreted factors, some of which crosstalk to distinct cells in the wound microenvironment. Epidermal integrin α3β1 is a receptor for laminin-332 in the cutaneous basement membrane. Here we show that wounds deficient in epidermal α3β1 express less epidermal-derived macrophage colony-stimulating factor 1 (CSF-1), the primary macrophage-stimulating growth factor. α3β1-deficient wounds also have fewer wound-proximal macrophages, suggesting that keratinocyte α3β1 may stimulate wound macrophages through the regulation of CSF-1. Indeed, using a set of immortalized keratinocytes, we demonstrate that keratinocyte-derived CSF-1 supports macrophage growth, and that α3β1 regulates <em>Csf1</em> expression through Src-dependent stimulation of Yes-associated protein (YAP)-Transcriptional enhanced associate domain (TEAD)-mediated transcription. Consistently, α3β1-deficient wounds <em>in vivo</em> display a substantially reduced number of keratinocytes with YAP-positive nuclei. Overall, our current findings identify a novel role for epidermal integrin α3β1 in regulating the cutaneous wound microenvironment by mediating paracrine crosstalk from keratinocytes to wound macrophages, implicating α3β1 as a potential target of wound therapy.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"127 ","pages":"Pages 48-56"},"PeriodicalIF":4.5000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keratinocyte integrin α3β1 induces expression of the macrophage stimulating factor, CSF-1, through a YAP/TEAD-dependent mechanism.\",\"authors\":\"Whitney M. Longmate , Emily Norton , Giesse Albeche Duarte , Lei Wu , Mathieu R. DiPersio , John M. Lamar , C. Michael DiPersio\",\"doi\":\"10.1016/j.matbio.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of wound therapy targeting integrins is hampered by inadequate understanding of integrin function in cutaneous wound healing and the wound microenvironment. Following cutaneous injury, keratinocytes migrate to restore the skin barrier, and macrophages aid in debris clearance. Thus, both keratinocytes and macrophages are critical to the coordination of tissue repair. Keratinocyte integrins have been shown to participate in this coordinated effort by regulating secreted factors, some of which crosstalk to distinct cells in the wound microenvironment. Epidermal integrin α3β1 is a receptor for laminin-332 in the cutaneous basement membrane. Here we show that wounds deficient in epidermal α3β1 express less epidermal-derived macrophage colony-stimulating factor 1 (CSF-1), the primary macrophage-stimulating growth factor. α3β1-deficient wounds also have fewer wound-proximal macrophages, suggesting that keratinocyte α3β1 may stimulate wound macrophages through the regulation of CSF-1. Indeed, using a set of immortalized keratinocytes, we demonstrate that keratinocyte-derived CSF-1 supports macrophage growth, and that α3β1 regulates <em>Csf1</em> expression through Src-dependent stimulation of Yes-associated protein (YAP)-Transcriptional enhanced associate domain (TEAD)-mediated transcription. Consistently, α3β1-deficient wounds <em>in vivo</em> display a substantially reduced number of keratinocytes with YAP-positive nuclei. Overall, our current findings identify a novel role for epidermal integrin α3β1 in regulating the cutaneous wound microenvironment by mediating paracrine crosstalk from keratinocytes to wound macrophages, implicating α3β1 as a potential target of wound therapy.</p></div>\",\"PeriodicalId\":49851,\"journal\":{\"name\":\"Matrix Biology\",\"volume\":\"127 \",\"pages\":\"Pages 48-56\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0945053X24000222\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X24000222","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Keratinocyte integrin α3β1 induces expression of the macrophage stimulating factor, CSF-1, through a YAP/TEAD-dependent mechanism.
The development of wound therapy targeting integrins is hampered by inadequate understanding of integrin function in cutaneous wound healing and the wound microenvironment. Following cutaneous injury, keratinocytes migrate to restore the skin barrier, and macrophages aid in debris clearance. Thus, both keratinocytes and macrophages are critical to the coordination of tissue repair. Keratinocyte integrins have been shown to participate in this coordinated effort by regulating secreted factors, some of which crosstalk to distinct cells in the wound microenvironment. Epidermal integrin α3β1 is a receptor for laminin-332 in the cutaneous basement membrane. Here we show that wounds deficient in epidermal α3β1 express less epidermal-derived macrophage colony-stimulating factor 1 (CSF-1), the primary macrophage-stimulating growth factor. α3β1-deficient wounds also have fewer wound-proximal macrophages, suggesting that keratinocyte α3β1 may stimulate wound macrophages through the regulation of CSF-1. Indeed, using a set of immortalized keratinocytes, we demonstrate that keratinocyte-derived CSF-1 supports macrophage growth, and that α3β1 regulates Csf1 expression through Src-dependent stimulation of Yes-associated protein (YAP)-Transcriptional enhanced associate domain (TEAD)-mediated transcription. Consistently, α3β1-deficient wounds in vivo display a substantially reduced number of keratinocytes with YAP-positive nuclei. Overall, our current findings identify a novel role for epidermal integrin α3β1 in regulating the cutaneous wound microenvironment by mediating paracrine crosstalk from keratinocytes to wound macrophages, implicating α3β1 as a potential target of wound therapy.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.