{"title":"研究伊蚊基因敲除抗性(kdr)突变的最新进展,重点关注几种显著的突变。","authors":"Nozomi Uemura, Kentaro Itokawa, Osamu Komagata, Shinji Kasai","doi":"10.1016/j.cois.2024.101178","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>Aedes</em> mosquito, which transmits the dengue fever virus and other viruses, has acquired resistance to pyrethroid insecticides in a naturally selective manner. Massive use of insecticides has led to the worldwide expansion of resistant populations. The major factor in pyrethroid resistance is knockdown resistance (kdr) caused by amino acid mutation(s) in the voltage-gated sodium channel, which is the target site of this insecticide group. Some <em>kdr</em> mutations can lead to a dramatic increase in resistance, and multiple mutations can increase the level of pyrethroid resistance by 10 to several-hundred. In this review, we summarize the <em>kdr</em> identified in <em>Aedes</em> mosquitoes with a focus on the recent advances in the study of kdr.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"63 ","pages":"Article 101178"},"PeriodicalIF":5.8000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214574524000208/pdfft?md5=eb6711e849535c35c116f2b90d675463&pid=1-s2.0-S2214574524000208-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the study of knockdown resistance mutations in Aedes mosquitoes with a focus on several remarkable mutations\",\"authors\":\"Nozomi Uemura, Kentaro Itokawa, Osamu Komagata, Shinji Kasai\",\"doi\":\"10.1016/j.cois.2024.101178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>Aedes</em> mosquito, which transmits the dengue fever virus and other viruses, has acquired resistance to pyrethroid insecticides in a naturally selective manner. Massive use of insecticides has led to the worldwide expansion of resistant populations. The major factor in pyrethroid resistance is knockdown resistance (kdr) caused by amino acid mutation(s) in the voltage-gated sodium channel, which is the target site of this insecticide group. Some <em>kdr</em> mutations can lead to a dramatic increase in resistance, and multiple mutations can increase the level of pyrethroid resistance by 10 to several-hundred. In this review, we summarize the <em>kdr</em> identified in <em>Aedes</em> mosquitoes with a focus on the recent advances in the study of kdr.</p></div>\",\"PeriodicalId\":11038,\"journal\":{\"name\":\"Current opinion in insect science\",\"volume\":\"63 \",\"pages\":\"Article 101178\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214574524000208/pdfft?md5=eb6711e849535c35c116f2b90d675463&pid=1-s2.0-S2214574524000208-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in insect science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214574524000208\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214574524000208","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Recent advances in the study of knockdown resistance mutations in Aedes mosquitoes with a focus on several remarkable mutations
The Aedes mosquito, which transmits the dengue fever virus and other viruses, has acquired resistance to pyrethroid insecticides in a naturally selective manner. Massive use of insecticides has led to the worldwide expansion of resistant populations. The major factor in pyrethroid resistance is knockdown resistance (kdr) caused by amino acid mutation(s) in the voltage-gated sodium channel, which is the target site of this insecticide group. Some kdr mutations can lead to a dramatic increase in resistance, and multiple mutations can increase the level of pyrethroid resistance by 10 to several-hundred. In this review, we summarize the kdr identified in Aedes mosquitoes with a focus on the recent advances in the study of kdr.
期刊介绍:
Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year.
The following 11 areas are covered by Current Opinion in Insect Science.
-Ecology
-Insect genomics
-Global Change Biology
-Molecular Physiology (Including Immunity)
-Pests and Resistance
-Parasites, Parasitoids and Biological Control
-Behavioural Ecology
-Development and Regulation
-Social Insects
-Neuroscience
-Vectors and Medical and Veterinary Entomology
There is also a section that changes every year to reflect hot topics in the field.
Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.