了解植物适应盐度和干旱的机理基础。

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-02-01 DOI:10.1071/FP23216
Muhammad Waseem, Mehtab Muhammad Aslam, Sunil Kumar Sahu
{"title":"了解植物适应盐度和干旱的机理基础。","authors":"Muhammad Waseem, Mehtab Muhammad Aslam, Sunil Kumar Sahu","doi":"10.1071/FP23216","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth and development is adversely affected by environmental constraints, particularly salinity and drought. Climate change has escalated the effect of salinity and drought on crops in varying ways, affecting agriculture and most importantly crop productivity. These stressors influence plants across a wide range of levels, including their morphology and physiological, biochemical, and molecular processes. Plant responses to salinity and drought stress have been the subject of intense research being explored globally. Considering the importance of the impact that these stresses can have on agriculture in the short term, novel strategies are being sought and adopted in breeding programs. Better understanding of the molecular, biochemical, and physiological responses of agriculturally important plants will ultimately help promote global food security. Moreover, considering the present challenges for agriculture, it is critical to consider how we can effectively transfer the knowledge generated with these approaches in the laboratory to the field, so as to mitigate these adversities. The present collection discusses how drought and salinity exert effects on plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the mechanistic basis of plant adaptation to salinity and drought.\",\"authors\":\"Muhammad Waseem, Mehtab Muhammad Aslam, Sunil Kumar Sahu\",\"doi\":\"10.1071/FP23216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant growth and development is adversely affected by environmental constraints, particularly salinity and drought. Climate change has escalated the effect of salinity and drought on crops in varying ways, affecting agriculture and most importantly crop productivity. These stressors influence plants across a wide range of levels, including their morphology and physiological, biochemical, and molecular processes. Plant responses to salinity and drought stress have been the subject of intense research being explored globally. Considering the importance of the impact that these stresses can have on agriculture in the short term, novel strategies are being sought and adopted in breeding programs. Better understanding of the molecular, biochemical, and physiological responses of agriculturally important plants will ultimately help promote global food security. Moreover, considering the present challenges for agriculture, it is critical to consider how we can effectively transfer the knowledge generated with these approaches in the laboratory to the field, so as to mitigate these adversities. The present collection discusses how drought and salinity exert effects on plants.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP23216\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23216","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物的生长和发育受到环境制约因素的不利影响,尤其是盐碱和干旱。气候变化以不同的方式加剧了盐碱和干旱对作物的影响,从而影响农业,最重要的是影响作物的产量。这些胁迫因素对植物的影响涉及多个层面,包括植物的形态、生理、生化和分子过程。植物对盐分和干旱胁迫的反应一直是全球范围内深入研究的主题。考虑到这些胁迫可能在短期内对农业产生的重要影响,人们正在育种计划中寻求和采用新的策略。更好地了解重要农业植物的分子、生化和生理反应,最终将有助于促进全球粮食安全。此外,考虑到当前农业所面临的挑战,至关重要的是要考虑如何将这些方法在实验室中产生的知识有效地转移到田间地头,以减轻这些不利因素。本论文集讨论了干旱和盐度如何对植物产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the mechanistic basis of plant adaptation to salinity and drought.

Plant growth and development is adversely affected by environmental constraints, particularly salinity and drought. Climate change has escalated the effect of salinity and drought on crops in varying ways, affecting agriculture and most importantly crop productivity. These stressors influence plants across a wide range of levels, including their morphology and physiological, biochemical, and molecular processes. Plant responses to salinity and drought stress have been the subject of intense research being explored globally. Considering the importance of the impact that these stresses can have on agriculture in the short term, novel strategies are being sought and adopted in breeding programs. Better understanding of the molecular, biochemical, and physiological responses of agriculturally important plants will ultimately help promote global food security. Moreover, considering the present challenges for agriculture, it is critical to consider how we can effectively transfer the knowledge generated with these approaches in the laboratory to the field, so as to mitigate these adversities. The present collection discusses how drought and salinity exert effects on plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum) Coordination between water relations strategy and carbon investment in leaf and stem in six fruit tree species. Genome editing for improvement of biotic and abiotic stress tolerance in cereals. Investigating the combined effects of β-sitosterol and biochar on nutritional value and drought tolerance in Phaseolus vulgaris under drought stress. Augmenting the basis of lodging tolerance in wheat (Triticum aestivum) under natural and simulated conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1