{"title":"将α-1,3-葡聚糖结合结构域添加到鼠李糖酵母的α-1,3-葡聚糖酶Agn1p中可提高不溶性α-1,3-葡聚糖的水解活性。","authors":"Yui Horaguchi, Moe Yokomichi, Masaki Takahashi, Fusheng Xu, Hiroyuki Konno, Koki Makabe, Shigekazu Yano","doi":"10.2323/jgam.2024.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>The glycoside hydrolase (GH) 71 α-1,3-glucanase (Agn1p) from Schizosaccharomyces pombe consists of an N-terminal signal sequence and a catalytic domain. Meanwhile, the GH87 α-1,3-glucanase (Agl-KA) from Bacillus circulans KA-304 consists of an N-terminal signal sequence, a first discoidin domain (DS1), a carbohydrate-binding module family 6 (CBM6), a threonine and proline repeat linker (TP), a second discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. DS1, CBM6, and DS2 exhibit α-1,3-glucan binding activity. This study involved genetically fusing TP, DS1, CBM6, TP, and DS2 to the C-terminus of Agn1p, generating the fusion enzyme Agn1p-DCD. The fusion enzyme was then expressed in Escherichia coli and purified from the cell-free extract. Agn1p-DCD and Agn1p exhibited similar characteristics, such as optimal pH, optimal temperature, pH stability, and thermostability. Insoluble α-1,3-glucan (1%) hydrolyzing assay showed that Agn1p-DCD and Agn1p released approximately 7.6 and 5.0 mM of reducing sugars, respectively, after 48 h of reaction. Kinetic analysis and an α-1,3-glucan binding assay indicated that the addition of DS1, CBM6, and DS2 enhanced the affinity of Agn1p for α-1,3-glucan. Moreover, Agn1p-DCD contributed to enhancing the fungal growth inhibition activity when combined with a mixture of GH19 chitinase and GH16 β-1,3-glucanase.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addition of α-1,3-glucan-binding domains to α-1,3-glucanase Agn1p from Schizosaccharomyces pombe enhances hydrolytic activity of insoluble α-1,3-glucan.\",\"authors\":\"Yui Horaguchi, Moe Yokomichi, Masaki Takahashi, Fusheng Xu, Hiroyuki Konno, Koki Makabe, Shigekazu Yano\",\"doi\":\"10.2323/jgam.2024.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The glycoside hydrolase (GH) 71 α-1,3-glucanase (Agn1p) from Schizosaccharomyces pombe consists of an N-terminal signal sequence and a catalytic domain. Meanwhile, the GH87 α-1,3-glucanase (Agl-KA) from Bacillus circulans KA-304 consists of an N-terminal signal sequence, a first discoidin domain (DS1), a carbohydrate-binding module family 6 (CBM6), a threonine and proline repeat linker (TP), a second discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. DS1, CBM6, and DS2 exhibit α-1,3-glucan binding activity. This study involved genetically fusing TP, DS1, CBM6, TP, and DS2 to the C-terminus of Agn1p, generating the fusion enzyme Agn1p-DCD. The fusion enzyme was then expressed in Escherichia coli and purified from the cell-free extract. Agn1p-DCD and Agn1p exhibited similar characteristics, such as optimal pH, optimal temperature, pH stability, and thermostability. Insoluble α-1,3-glucan (1%) hydrolyzing assay showed that Agn1p-DCD and Agn1p released approximately 7.6 and 5.0 mM of reducing sugars, respectively, after 48 h of reaction. Kinetic analysis and an α-1,3-glucan binding assay indicated that the addition of DS1, CBM6, and DS2 enhanced the affinity of Agn1p for α-1,3-glucan. Moreover, Agn1p-DCD contributed to enhancing the fungal growth inhibition activity when combined with a mixture of GH19 chitinase and GH16 β-1,3-glucanase.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2024.02.001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2024.02.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Addition of α-1,3-glucan-binding domains to α-1,3-glucanase Agn1p from Schizosaccharomyces pombe enhances hydrolytic activity of insoluble α-1,3-glucan.
The glycoside hydrolase (GH) 71 α-1,3-glucanase (Agn1p) from Schizosaccharomyces pombe consists of an N-terminal signal sequence and a catalytic domain. Meanwhile, the GH87 α-1,3-glucanase (Agl-KA) from Bacillus circulans KA-304 consists of an N-terminal signal sequence, a first discoidin domain (DS1), a carbohydrate-binding module family 6 (CBM6), a threonine and proline repeat linker (TP), a second discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. DS1, CBM6, and DS2 exhibit α-1,3-glucan binding activity. This study involved genetically fusing TP, DS1, CBM6, TP, and DS2 to the C-terminus of Agn1p, generating the fusion enzyme Agn1p-DCD. The fusion enzyme was then expressed in Escherichia coli and purified from the cell-free extract. Agn1p-DCD and Agn1p exhibited similar characteristics, such as optimal pH, optimal temperature, pH stability, and thermostability. Insoluble α-1,3-glucan (1%) hydrolyzing assay showed that Agn1p-DCD and Agn1p released approximately 7.6 and 5.0 mM of reducing sugars, respectively, after 48 h of reaction. Kinetic analysis and an α-1,3-glucan binding assay indicated that the addition of DS1, CBM6, and DS2 enhanced the affinity of Agn1p for α-1,3-glucan. Moreover, Agn1p-DCD contributed to enhancing the fungal growth inhibition activity when combined with a mixture of GH19 chitinase and GH16 β-1,3-glucanase.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.