用于免疫疗法剂量优化的广义贝叶斯最优区间设计。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-07-01 Epub Date: 2024-01-31 DOI:10.1002/pst.2369
Qing Xia, Kentaro Takeda, Yusuke Yamaguchi, Jun Zhang
{"title":"用于免疫疗法剂量优化的广义贝叶斯最优区间设计。","authors":"Qing Xia, Kentaro Takeda, Yusuke Yamaguchi, Jun Zhang","doi":"10.1002/pst.2369","DOIUrl":null,"url":null,"abstract":"<p><p>For novel immuno-oncology therapies, the primary purpose of a dose-finding trial is to identify an optimal dose (OD), defined as the tolerable dose having adequate efficacy and immune response under the unpredictable dose-outcome (toxicity, efficacy, and immune response) relationships. In addition, the multiple low or moderate-grade toxicities rather than dose-limiting toxicities (DLTs) and multiple levels of efficacy should be evaluated differently in dose-finding to determine true OD for developing novel immuno-oncology therapies. We proposed a generalized Bayesian optimal interval design for immunotherapy, simultaneously considering efficacy and toxicity grades and immune response outcomes. The proposed design, named gBOIN-ETI design, is model-assisted and easy to implement to develop immunotherapy efficiently. The operating characteristics of the gBOIN-ETI are compared with other dose-finding trial designs in oncology by simulation across various realistic settings. Our simulations show that the gBOIN-ETI design could outperform the other available approaches in terms of both the percentage of correct OD selection and the average number of patients allocated to the OD across various realistic trial settings.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"480-494"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized Bayesian optimal interval design for dose optimization in immunotherapy.\",\"authors\":\"Qing Xia, Kentaro Takeda, Yusuke Yamaguchi, Jun Zhang\",\"doi\":\"10.1002/pst.2369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For novel immuno-oncology therapies, the primary purpose of a dose-finding trial is to identify an optimal dose (OD), defined as the tolerable dose having adequate efficacy and immune response under the unpredictable dose-outcome (toxicity, efficacy, and immune response) relationships. In addition, the multiple low or moderate-grade toxicities rather than dose-limiting toxicities (DLTs) and multiple levels of efficacy should be evaluated differently in dose-finding to determine true OD for developing novel immuno-oncology therapies. We proposed a generalized Bayesian optimal interval design for immunotherapy, simultaneously considering efficacy and toxicity grades and immune response outcomes. The proposed design, named gBOIN-ETI design, is model-assisted and easy to implement to develop immunotherapy efficiently. The operating characteristics of the gBOIN-ETI are compared with other dose-finding trial designs in oncology by simulation across various realistic settings. Our simulations show that the gBOIN-ETI design could outperform the other available approaches in terms of both the percentage of correct OD selection and the average number of patients allocated to the OD across various realistic trial settings.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"480-494\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2369\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2369","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

对于新型免疫肿瘤疗法,剂量试验的主要目的是确定最佳剂量(OD),即在不可预测的剂量-结果(毒性、疗效和免疫反应)关系下,具有足够疗效和免疫反应的可耐受剂量。此外,在剂量寻找过程中,应对多种低度或中度毒性(而非剂量限制性毒性(DLT))和多级疗效进行不同的评估,以确定开发新型免疫肿瘤疗法的真正OD。我们为免疫疗法提出了一种广义贝叶斯最优区间设计,同时考虑疗效和毒性等级以及免疫反应结果。该设计被命名为 gBOIN-ETI 设计,由模型辅助,易于实施,可高效开发免疫疗法。我们通过模拟各种现实环境,将 gBOIN-ETI 的运行特点与肿瘤学领域的其他剂量试验设计进行了比较。我们的模拟结果表明,gBOIN-ETI 设计在各种实际试验环境中,无论是在正确选择 OD 的百分比方面,还是在分配给 OD 的患者平均人数方面,都优于其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generalized Bayesian optimal interval design for dose optimization in immunotherapy.

For novel immuno-oncology therapies, the primary purpose of a dose-finding trial is to identify an optimal dose (OD), defined as the tolerable dose having adequate efficacy and immune response under the unpredictable dose-outcome (toxicity, efficacy, and immune response) relationships. In addition, the multiple low or moderate-grade toxicities rather than dose-limiting toxicities (DLTs) and multiple levels of efficacy should be evaluated differently in dose-finding to determine true OD for developing novel immuno-oncology therapies. We proposed a generalized Bayesian optimal interval design for immunotherapy, simultaneously considering efficacy and toxicity grades and immune response outcomes. The proposed design, named gBOIN-ETI design, is model-assisted and easy to implement to develop immunotherapy efficiently. The operating characteristics of the gBOIN-ETI are compared with other dose-finding trial designs in oncology by simulation across various realistic settings. Our simulations show that the gBOIN-ETI design could outperform the other available approaches in terms of both the percentage of correct OD selection and the average number of patients allocated to the OD across various realistic trial settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data. Subgroup Identification Based on Quantitative Objectives. A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1