用粉末冶金法制造耐火高熵合金:进展、挑战和机遇

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Science: Advanced Materials and Devices Pub Date : 2024-02-07 DOI:10.1016/j.jsamd.2024.100688
Baoguang Zhang , Yuanping Huang , Zhenyu Dou , Jian Wang , Zhifu Huang
{"title":"用粉末冶金法制造耐火高熵合金:进展、挑战和机遇","authors":"Baoguang Zhang ,&nbsp;Yuanping Huang ,&nbsp;Zhenyu Dou ,&nbsp;Jian Wang ,&nbsp;Zhifu Huang","doi":"10.1016/j.jsamd.2024.100688","DOIUrl":null,"url":null,"abstract":"<div><p>Refractory high-entropy alloys, which involve the mixing of four or more refractory metal elements in an equiatomic or near-equiatomic ratio, hold significant potential for various applications in high-temperature materials fields. This is mainly due to their stable phase structure and excellent high-temperature properties. While considerable interest has been in these alloys, most of them have been developed using melting casting technology. However, powder metallurgy has emerged as a promising alternative for further advancement in this field. It has the potential to expand the application areas and enhance the properties of these alloys. This article introduces to various techniques for fabricating pre-alloyed refractory high-entropy powders and their densification. Additionally, it reviews the methods for regulating the microstructure and properties of powder metallurgy refractory high-entropy alloys.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000194/pdfft?md5=f9a0cafbddf7d1d9a9ffbdf44cf281f0&pid=1-s2.0-S2468217924000194-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Refractory high-entropy alloys fabricated by powder metallurgy: Progress, challenges and opportunities\",\"authors\":\"Baoguang Zhang ,&nbsp;Yuanping Huang ,&nbsp;Zhenyu Dou ,&nbsp;Jian Wang ,&nbsp;Zhifu Huang\",\"doi\":\"10.1016/j.jsamd.2024.100688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Refractory high-entropy alloys, which involve the mixing of four or more refractory metal elements in an equiatomic or near-equiatomic ratio, hold significant potential for various applications in high-temperature materials fields. This is mainly due to their stable phase structure and excellent high-temperature properties. While considerable interest has been in these alloys, most of them have been developed using melting casting technology. However, powder metallurgy has emerged as a promising alternative for further advancement in this field. It has the potential to expand the application areas and enhance the properties of these alloys. This article introduces to various techniques for fabricating pre-alloyed refractory high-entropy powders and their densification. Additionally, it reviews the methods for regulating the microstructure and properties of powder metallurgy refractory high-entropy alloys.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000194/pdfft?md5=f9a0cafbddf7d1d9a9ffbdf44cf281f0&pid=1-s2.0-S2468217924000194-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000194\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000194","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

难熔高熵合金涉及四种或更多难熔金属元素以等原子或接近等原子的比例混合,在高温材料领域的各种应用中具有巨大潜力。这主要是由于它们具有稳定的相结构和优异的高温特性。虽然人们对这些合金产生了浓厚的兴趣,但它们大多是利用熔铸技术开发出来的。然而,粉末冶金技术已成为该领域进一步发展的一个有前途的替代技术。粉末冶金有可能扩大这些合金的应用领域并提高其性能。本文介绍了制造预合金化高熵耐火粉末及其致密化的各种技术。此外,文章还回顾了调节粉末冶金难熔高熵合金微观结构和性能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refractory high-entropy alloys fabricated by powder metallurgy: Progress, challenges and opportunities

Refractory high-entropy alloys, which involve the mixing of four or more refractory metal elements in an equiatomic or near-equiatomic ratio, hold significant potential for various applications in high-temperature materials fields. This is mainly due to their stable phase structure and excellent high-temperature properties. While considerable interest has been in these alloys, most of them have been developed using melting casting technology. However, powder metallurgy has emerged as a promising alternative for further advancement in this field. It has the potential to expand the application areas and enhance the properties of these alloys. This article introduces to various techniques for fabricating pre-alloyed refractory high-entropy powders and their densification. Additionally, it reviews the methods for regulating the microstructure and properties of powder metallurgy refractory high-entropy alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
期刊最新文献
Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators A novel carbon quantum dot (CQD) synthesis method with cost-effective reactants and a definitive indication: Hot bubble synthesis (HBBBS) Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning Photothermal impacts induced by laser pulse in a 2D semiconducting medium with temperature-dependent properties under strain–temperature rate-dependent theory Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1