使用考虑初值问题的自适应分数阶立方卡尔曼滤波器估算锂离子电池的充电状态

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-02-13 DOI:10.1016/j.est.2024.110728
Haoyu Chai , Zhe Gao , Zhiyuan Jiao , Dandan Song
{"title":"使用考虑初值问题的自适应分数阶立方卡尔曼滤波器估算锂离子电池的充电状态","authors":"Haoyu Chai ,&nbsp;Zhe Gao ,&nbsp;Zhiyuan Jiao ,&nbsp;Dandan Song","doi":"10.1016/j.est.2024.110728","DOIUrl":null,"url":null,"abstract":"<div><p>For the problem of the accurate estimation of the state of charge (SOC) in lithium-ion batteries, an adaptive fractional-order cubature Kalman filtering algorithm (AFCKF) considering the initial value problem is proposed in this paper. Firstly, we establish the state space equation describing the dynamic characteristics of lithium-ion batteries based on the relationship between the Caputo derivative and the Riemann–Liouville derivative. Secondly, an AFCKF algorithm considering the initial value problem is designed to achieve the SOC estimation for the case that the model parameters are uncertain. Then, the adaptive adjustment of multiple noise covariance matrices is implemented by using an iterative method. Finally, the simulation results indicate that the designed algorithm is superior to the AFCKF without the initial value compensation algorithm.</p></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"84 ","pages":"Article 110728"},"PeriodicalIF":8.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of charge estimation of lithium-ion battery with an adaptive fractional-order cubature Kalman filter considering initial value problem\",\"authors\":\"Haoyu Chai ,&nbsp;Zhe Gao ,&nbsp;Zhiyuan Jiao ,&nbsp;Dandan Song\",\"doi\":\"10.1016/j.est.2024.110728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the problem of the accurate estimation of the state of charge (SOC) in lithium-ion batteries, an adaptive fractional-order cubature Kalman filtering algorithm (AFCKF) considering the initial value problem is proposed in this paper. Firstly, we establish the state space equation describing the dynamic characteristics of lithium-ion batteries based on the relationship between the Caputo derivative and the Riemann–Liouville derivative. Secondly, an AFCKF algorithm considering the initial value problem is designed to achieve the SOC estimation for the case that the model parameters are uncertain. Then, the adaptive adjustment of multiple noise covariance matrices is implemented by using an iterative method. Finally, the simulation results indicate that the designed algorithm is superior to the AFCKF without the initial value compensation algorithm.</p></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"84 \",\"pages\":\"Article 110728\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24003128\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24003128","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

针对锂离子电池中电荷状态(SOC)的精确估算问题,本文提出了一种考虑初值问题的自适应分数阶立方卡尔曼滤波算法(AFCKF)。首先,我们根据卡普托导数和黎曼-刘维尔导数之间的关系建立了描述锂离子电池动态特性的状态空间方程。其次,设计了一种考虑初始值问题的 AFCKF 算法,以实现模型参数不确定情况下的 SOC 估算。然后,利用迭代法实现了多个噪声协方差矩阵的自适应调整。最后,仿真结果表明,所设计的算法优于无初值补偿算法的 AFCKF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State of charge estimation of lithium-ion battery with an adaptive fractional-order cubature Kalman filter considering initial value problem

For the problem of the accurate estimation of the state of charge (SOC) in lithium-ion batteries, an adaptive fractional-order cubature Kalman filtering algorithm (AFCKF) considering the initial value problem is proposed in this paper. Firstly, we establish the state space equation describing the dynamic characteristics of lithium-ion batteries based on the relationship between the Caputo derivative and the Riemann–Liouville derivative. Secondly, an AFCKF algorithm considering the initial value problem is designed to achieve the SOC estimation for the case that the model parameters are uncertain. Then, the adaptive adjustment of multiple noise covariance matrices is implemented by using an iterative method. Finally, the simulation results indicate that the designed algorithm is superior to the AFCKF without the initial value compensation algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Optimal scheduling of photovoltaic and battery energy storage in distribution networks using an ameliorated sand cat swarm optimization algorithm: Economic assessment with different loading scenarios What are the development barriers of user-side shared energy storage system considering diversified flexibility adjustment demands? A novel two-dimensional assessment model Advanced energy management and power quality enhancement in hybrid fuel cell-battery-super capacitor microgrids using snow ablation optimizer-robust variational physics informed Mechanical modelling approach for the simulation of solid-state electrolytes The performance of MOFs and rich structure types of stable Zr-MOFs in storing clean energy: Hydrogen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1