NeuroSOFM-Classifier:利用连续实时无监督聚类进行分类的基于纳米级 FeFET 的低功耗神经形态架构

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-01-23 DOI:10.1109/TNANO.2024.3357068
Siddharth Barve;Rashmi Jha
{"title":"NeuroSOFM-Classifier:利用连续实时无监督聚类进行分类的基于纳米级 FeFET 的低功耗神经形态架构","authors":"Siddharth Barve;Rashmi Jha","doi":"10.1109/TNANO.2024.3357068","DOIUrl":null,"url":null,"abstract":"Supervised machine learning techniques are becoming subject of significant interest in data analysis. However, the high memory bandwidth requirement of current implementations, scarcity of labeled data, and dynamic environments in many applications prevent implementation of supervised machine learning techniques. In this work, we propose a neuromorphic architecture implementing the self-organizing feature map algorithm using nanoscale ferroelectric field-effect transistors (FeFETs) and complementary metal-oxide-semiconductor (CMOS) technology to produce a semi-supervised NeuroSOFM-Classifier. A best matching input (BMI) identifier circuit allows for very few labeled samples to be used to provide supervised class labels for each hardware neuron in the NeuroSOFM-Classifier. The NeuroSOFM-Classifier architecture can then be used to inference or classify the new data in real-time. This NeuroSOFM-Classifier, trained on just 2% of the labeled data, is capable of classifying COVID-19 patient chest x-rays with an average accuracy of 83%.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"124-131"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NeuroSOFM-Classifier: Nanoscale FeFETs Based Low Power Neuromorphic Architecture for Classification Using Continuous Real-Time Unsupervised Clustering\",\"authors\":\"Siddharth Barve;Rashmi Jha\",\"doi\":\"10.1109/TNANO.2024.3357068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised machine learning techniques are becoming subject of significant interest in data analysis. However, the high memory bandwidth requirement of current implementations, scarcity of labeled data, and dynamic environments in many applications prevent implementation of supervised machine learning techniques. In this work, we propose a neuromorphic architecture implementing the self-organizing feature map algorithm using nanoscale ferroelectric field-effect transistors (FeFETs) and complementary metal-oxide-semiconductor (CMOS) technology to produce a semi-supervised NeuroSOFM-Classifier. A best matching input (BMI) identifier circuit allows for very few labeled samples to be used to provide supervised class labels for each hardware neuron in the NeuroSOFM-Classifier. The NeuroSOFM-Classifier architecture can then be used to inference or classify the new data in real-time. This NeuroSOFM-Classifier, trained on just 2% of the labeled data, is capable of classifying COVID-19 patient chest x-rays with an average accuracy of 83%.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"124-131\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10412204/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10412204/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

有监督的机器学习技术正在成为数据分析领域备受关注的主题。然而,当前实现方法对内存带宽的要求较高、标记数据稀缺以及许多应用中的动态环境都阻碍了监督机器学习技术的实现。在这项工作中,我们提出了一种神经形态架构,利用纳米级铁电场效应晶体管(FeFET)和互补金属氧化物半导体(CMOS)技术来实现自组织特征图算法,从而制造出一种半监督式 NeuroSOFM 分类器。最佳匹配输入 (BMI) 识别器电路允许使用极少量的标记样本为 NeuroSOFM-Classifier 中的每个硬件神经元提供有监督的类标签。然后,NeuroSOFM-Classifier 架构可用于对新数据进行实时推理或分类。该 NeuroSOFM-Classifier 仅使用 2% 的标记数据进行训练,就能对 COVID-19 患者胸部 X 光片进行分类,平均准确率高达 83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeuroSOFM-Classifier: Nanoscale FeFETs Based Low Power Neuromorphic Architecture for Classification Using Continuous Real-Time Unsupervised Clustering
Supervised machine learning techniques are becoming subject of significant interest in data analysis. However, the high memory bandwidth requirement of current implementations, scarcity of labeled data, and dynamic environments in many applications prevent implementation of supervised machine learning techniques. In this work, we propose a neuromorphic architecture implementing the self-organizing feature map algorithm using nanoscale ferroelectric field-effect transistors (FeFETs) and complementary metal-oxide-semiconductor (CMOS) technology to produce a semi-supervised NeuroSOFM-Classifier. A best matching input (BMI) identifier circuit allows for very few labeled samples to be used to provide supervised class labels for each hardware neuron in the NeuroSOFM-Classifier. The NeuroSOFM-Classifier architecture can then be used to inference or classify the new data in real-time. This NeuroSOFM-Classifier, trained on just 2% of the labeled data, is capable of classifying COVID-19 patient chest x-rays with an average accuracy of 83%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Modeling and Simulation of Correlated Cycle-to- Cycle Variability in the Current-Voltage Hysteresis Loops of RRAM Devices Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1