{"title":"最大化空心碳球表面的单镍位,实现高效二氧化碳电还原","authors":"Dan Ping, Yi-Chen Feng, Shi-De Wu*, Feng Yi, Si-Yuan Cheng, Shi-Wen Wang, Jun-Feng Tian, Heng Wang, Xu-Zhao Yang, Dong-Jie Guo and Shao-Ming Fang*, ","doi":"10.1021/acssuschemeng.3c06494","DOIUrl":null,"url":null,"abstract":"<p >Single-atom catalysts show great application potential due to their high catalytic efficiency but suffer from insufficient active site density and utilization. Herein, a robust single-atomic Ni catalyst anchored on porous hollow carbon spheres (Ni–N–HCS) was successfully synthesized via a pyrolysis approach employing SiO<sub>2</sub>-templated HCS, dicyandiamide, and Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O as raw materials. Profiting from the abundant (3.47 wt %) and accessible single-Ni active sites and the robust hollow carbon architecture, this catalyst showed superior performance for electrochemical CO<sub>2</sub> reduction reaction in an H-type cell. A prominent Faradaic efficiency for CO (95.04%) can be achieved at a −0.70 V vs a reversible hydrogen electrode (RHE) and the value can even be kept at >80% over a broad voltage range (−0.62 to −0.87 V vs RHE) with a desirable CO current density (10.88 mA·cm<sup>–2</sup>). In addition, the FE<sub>CO</sub> was kept almost unchanged during continuous electrolysis for 40 h. Significantly, Ni–N–HCS also exhibits an excellent CO selectivity of >95% over the whole investigated potential window in the flow cell. We believe this work will provide a new possibility to build single-atom catalysts with maximized utilization for improving electrochemical performance.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing Surface Single-Ni Sites on Hollow Carbon Sphere for Efficient CO2 Electroreduction\",\"authors\":\"Dan Ping, Yi-Chen Feng, Shi-De Wu*, Feng Yi, Si-Yuan Cheng, Shi-Wen Wang, Jun-Feng Tian, Heng Wang, Xu-Zhao Yang, Dong-Jie Guo and Shao-Ming Fang*, \",\"doi\":\"10.1021/acssuschemeng.3c06494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Single-atom catalysts show great application potential due to their high catalytic efficiency but suffer from insufficient active site density and utilization. Herein, a robust single-atomic Ni catalyst anchored on porous hollow carbon spheres (Ni–N–HCS) was successfully synthesized via a pyrolysis approach employing SiO<sub>2</sub>-templated HCS, dicyandiamide, and Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O as raw materials. Profiting from the abundant (3.47 wt %) and accessible single-Ni active sites and the robust hollow carbon architecture, this catalyst showed superior performance for electrochemical CO<sub>2</sub> reduction reaction in an H-type cell. A prominent Faradaic efficiency for CO (95.04%) can be achieved at a −0.70 V vs a reversible hydrogen electrode (RHE) and the value can even be kept at >80% over a broad voltage range (−0.62 to −0.87 V vs RHE) with a desirable CO current density (10.88 mA·cm<sup>–2</sup>). In addition, the FE<sub>CO</sub> was kept almost unchanged during continuous electrolysis for 40 h. Significantly, Ni–N–HCS also exhibits an excellent CO selectivity of >95% over the whole investigated potential window in the flow cell. We believe this work will provide a new possibility to build single-atom catalysts with maximized utilization for improving electrochemical performance.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06494\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06494","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
单原子催化剂因其催化效率高而显示出巨大的应用潜力,但却存在活性位点密度和利用率不足的问题。在此,我们采用热解方法,以二氧化硅模板的 HCS、双氰胺和 Ni(CH3COO)2-4H2O 为原料,成功合成了锚定在多孔空心碳球(Ni-N-HCS)上的强效单原子镍催化剂。这种催化剂具有丰富(3.47 wt %)、易获得的单镍活性位点和坚固的空心碳结构,因此在 H 型电池中进行电化学二氧化碳还原反应时表现出卓越的性能。与可逆氢电极(RHE)相比,在 -0.70 V 的电压下,一氧化碳的法拉第效率(95.04%)显著提高,在较宽的电压范围内(与 RHE 相比,在 -0.62 至 -0.87 V 的电压下),该值甚至可保持在 80%,一氧化碳电流密度达到理想水平(10.88 mA-cm-2)。此外,在连续电解 40 小时的过程中,FECO 几乎保持不变。值得注意的是,Ni-N-HCS 在流动池中的整个研究电位窗口内还表现出卓越的 CO 选择性,高达 95%。我们相信,这项工作将为构建具有最大利用率的单原子催化剂提供新的可能性,从而提高电化学性能。
Maximizing Surface Single-Ni Sites on Hollow Carbon Sphere for Efficient CO2 Electroreduction
Single-atom catalysts show great application potential due to their high catalytic efficiency but suffer from insufficient active site density and utilization. Herein, a robust single-atomic Ni catalyst anchored on porous hollow carbon spheres (Ni–N–HCS) was successfully synthesized via a pyrolysis approach employing SiO2-templated HCS, dicyandiamide, and Ni(CH3COO)2·4H2O as raw materials. Profiting from the abundant (3.47 wt %) and accessible single-Ni active sites and the robust hollow carbon architecture, this catalyst showed superior performance for electrochemical CO2 reduction reaction in an H-type cell. A prominent Faradaic efficiency for CO (95.04%) can be achieved at a −0.70 V vs a reversible hydrogen electrode (RHE) and the value can even be kept at >80% over a broad voltage range (−0.62 to −0.87 V vs RHE) with a desirable CO current density (10.88 mA·cm–2). In addition, the FECO was kept almost unchanged during continuous electrolysis for 40 h. Significantly, Ni–N–HCS also exhibits an excellent CO selectivity of >95% over the whole investigated potential window in the flow cell. We believe this work will provide a new possibility to build single-atom catalysts with maximized utilization for improving electrochemical performance.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.