Jacob McErlean, John Malik, Yu-Ting Lin, Ronen Talmon, Hau-Tieng Wu
{"title":"具有相位同步功能的多软件传感器无监督组合:一种用于心电图衍生呼吸的稳健方法。","authors":"Jacob McErlean, John Malik, Yu-Ting Lin, Ronen Talmon, Hau-Tieng Wu","doi":"10.1088/1361-6579/ad290b","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>We aimed to fuse the outputs of different electrocardiogram-derived respiration (EDR) algorithms to create one higher quality EDR signal.<i>Methods.</i>We viewed each EDR algorithm as a software sensor that recorded breathing activity from a different vantage point, identified high-quality software sensors based on the respiratory signal quality index, aligned the highest-quality EDRs with a phase synchronization technique based on the graph connection Laplacian, and finally fused those aligned, high-quality EDRs. We refer to the output as the sync-ensembled EDR signal. The proposed algorithm was evaluated on two large-scale databases of whole-night polysomnograms. We evaluated the performance of the proposed algorithm using three respiratory signals recorded from different hardware sensors, and compared it with other existing EDR algorithms. A sensitivity analysis was carried out for a total of five cases: fusion by taking the mean of EDR signals, and the four cases of EDR signal alignment without and with synchronization and without and with signal quality selection.<i>Results.</i>The sync-ensembled EDR algorithm outperforms existing EDR algorithms when evaluated by the synchronized correlation (γ-score), optimal transport (OT) distance, and estimated average respiratory rate score, all with statistical significance. The sensitivity analysis shows that the signal quality selection and EDR signal alignment are both critical for the performance, both with statistical significance.<i>Conclusion.</i>The sync-ensembled EDR provides robust respiratory information from electrocardiogram.<i>Significance.</i>Phase synchronization is not only theoretically rigorous but also practical to design a robust EDR.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised ensembling of multiple software sensors with phase synchronization: a robust approach for electrocardiogram-derived respiration.\",\"authors\":\"Jacob McErlean, John Malik, Yu-Ting Lin, Ronen Talmon, Hau-Tieng Wu\",\"doi\":\"10.1088/1361-6579/ad290b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>We aimed to fuse the outputs of different electrocardiogram-derived respiration (EDR) algorithms to create one higher quality EDR signal.<i>Methods.</i>We viewed each EDR algorithm as a software sensor that recorded breathing activity from a different vantage point, identified high-quality software sensors based on the respiratory signal quality index, aligned the highest-quality EDRs with a phase synchronization technique based on the graph connection Laplacian, and finally fused those aligned, high-quality EDRs. We refer to the output as the sync-ensembled EDR signal. The proposed algorithm was evaluated on two large-scale databases of whole-night polysomnograms. We evaluated the performance of the proposed algorithm using three respiratory signals recorded from different hardware sensors, and compared it with other existing EDR algorithms. A sensitivity analysis was carried out for a total of five cases: fusion by taking the mean of EDR signals, and the four cases of EDR signal alignment without and with synchronization and without and with signal quality selection.<i>Results.</i>The sync-ensembled EDR algorithm outperforms existing EDR algorithms when evaluated by the synchronized correlation (γ-score), optimal transport (OT) distance, and estimated average respiratory rate score, all with statistical significance. The sensitivity analysis shows that the signal quality selection and EDR signal alignment are both critical for the performance, both with statistical significance.<i>Conclusion.</i>The sync-ensembled EDR provides robust respiratory information from electrocardiogram.<i>Significance.</i>Phase synchronization is not only theoretically rigorous but also practical to design a robust EDR.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad290b\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad290b","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Unsupervised ensembling of multiple software sensors with phase synchronization: a robust approach for electrocardiogram-derived respiration.
Objective.We aimed to fuse the outputs of different electrocardiogram-derived respiration (EDR) algorithms to create one higher quality EDR signal.Methods.We viewed each EDR algorithm as a software sensor that recorded breathing activity from a different vantage point, identified high-quality software sensors based on the respiratory signal quality index, aligned the highest-quality EDRs with a phase synchronization technique based on the graph connection Laplacian, and finally fused those aligned, high-quality EDRs. We refer to the output as the sync-ensembled EDR signal. The proposed algorithm was evaluated on two large-scale databases of whole-night polysomnograms. We evaluated the performance of the proposed algorithm using three respiratory signals recorded from different hardware sensors, and compared it with other existing EDR algorithms. A sensitivity analysis was carried out for a total of five cases: fusion by taking the mean of EDR signals, and the four cases of EDR signal alignment without and with synchronization and without and with signal quality selection.Results.The sync-ensembled EDR algorithm outperforms existing EDR algorithms when evaluated by the synchronized correlation (γ-score), optimal transport (OT) distance, and estimated average respiratory rate score, all with statistical significance. The sensitivity analysis shows that the signal quality selection and EDR signal alignment are both critical for the performance, both with statistical significance.Conclusion.The sync-ensembled EDR provides robust respiratory information from electrocardiogram.Significance.Phase synchronization is not only theoretically rigorous but also practical to design a robust EDR.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.