用于放射治疗的三维打印栓剂:几何参数和打印参数对剂量测定特征和气隙评估的影响。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-06-01 Epub Date: 2024-02-13 DOI:10.1007/s12194-024-00782-1
Simone Giovanni Gugliandolo, Shabarish Purushothaman Pillai, Shankar Rajendran, Maria Giulia Vincini, Matteo Pepa, Floriana Pansini, Mattia Zaffaroni, Giulia Marvaso, Daniela Alterio, Andrea Vavassori, Stefano Durante, Stefania Volpe, Federica Cattani, Barbara Alicja Jereczek-Fossa, Davide Moscatelli, Bianca Maria Colosimo
{"title":"用于放射治疗的三维打印栓剂:几何参数和打印参数对剂量测定特征和气隙评估的影响。","authors":"Simone Giovanni Gugliandolo, Shabarish Purushothaman Pillai, Shankar Rajendran, Maria Giulia Vincini, Matteo Pepa, Floriana Pansini, Mattia Zaffaroni, Giulia Marvaso, Daniela Alterio, Andrea Vavassori, Stefano Durante, Stefania Volpe, Federica Cattani, Barbara Alicja Jereczek-Fossa, Davide Moscatelli, Bianca Maria Colosimo","doi":"10.1007/s12194-024-00782-1","DOIUrl":null,"url":null,"abstract":"<p><p>The work investigates the implementation of personalized radiotherapy boluses by means of additive manufacturing technologies. Boluses materials that are currently used need an excessive amount of human intervention which leads to reduced repeatability in terms of dosimetry. Additive manufacturing can solve this problem by eliminating the human factor in the process of fabrication. Planar boluses with fixed geometry and personalized boluses printed starting from a computed tomography scan of a radiotherapy phantom were produced. First, a dosimetric characterization study on planar bolus designs to quantify the effects of print parameters such as infill density and geometry on the radiation beam was made. Secondly, a volumetric quantification of air gap between the bolus and the skin of the patient as well as dosimetric analyses were performed. The optimization process according to the obtained dosimetric and airgap results allowed us to find a combination of parameters to have the 3D-printed bolus performing similarly to that in conventional use. These preliminary results confirm those in the relevant literature, with 3D-printed boluses showing a dosimetric performance similar to conventional boluses with the additional advantage of being perfectly conformed to the patient geometry.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128404/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D-printed boluses for radiotherapy: influence of geometrical and printing parameters on dosimetric characterization and air gap evaluation.\",\"authors\":\"Simone Giovanni Gugliandolo, Shabarish Purushothaman Pillai, Shankar Rajendran, Maria Giulia Vincini, Matteo Pepa, Floriana Pansini, Mattia Zaffaroni, Giulia Marvaso, Daniela Alterio, Andrea Vavassori, Stefano Durante, Stefania Volpe, Federica Cattani, Barbara Alicja Jereczek-Fossa, Davide Moscatelli, Bianca Maria Colosimo\",\"doi\":\"10.1007/s12194-024-00782-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The work investigates the implementation of personalized radiotherapy boluses by means of additive manufacturing technologies. Boluses materials that are currently used need an excessive amount of human intervention which leads to reduced repeatability in terms of dosimetry. Additive manufacturing can solve this problem by eliminating the human factor in the process of fabrication. Planar boluses with fixed geometry and personalized boluses printed starting from a computed tomography scan of a radiotherapy phantom were produced. First, a dosimetric characterization study on planar bolus designs to quantify the effects of print parameters such as infill density and geometry on the radiation beam was made. Secondly, a volumetric quantification of air gap between the bolus and the skin of the patient as well as dosimetric analyses were performed. The optimization process according to the obtained dosimetric and airgap results allowed us to find a combination of parameters to have the 3D-printed bolus performing similarly to that in conventional use. These preliminary results confirm those in the relevant literature, with 3D-printed boluses showing a dosimetric performance similar to conventional boluses with the additional advantage of being perfectly conformed to the patient geometry.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00782-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00782-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究通过增材制造技术实现个性化放疗栓。目前使用的栓剂材料需要过多的人工干预,导致剂量测定的可重复性降低。增材制造技术可以消除制造过程中的人为因素,从而解决这一问题。根据放疗模型的计算机断层扫描结果,我们制作了具有固定几何形状的平面注射器和个性化注射器。首先,对平面栓剂设计进行了剂量测定研究,以量化打印参数(如填充密度和几何形状)对辐射束的影响。其次,还对栓剂与患者皮肤之间的空气间隙进行了体积量化,并进行了剂量分析。根据获得的剂量测定和气隙结果进行优化后,我们找到了一个参数组合,使 3D 打印栓剂的性能与传统使用的栓剂类似。这些初步结果证实了相关文献中的观点,三维打印栓剂显示出与传统栓剂相似的剂量学性能,而且还具有与患者几何形状完全吻合的额外优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D-printed boluses for radiotherapy: influence of geometrical and printing parameters on dosimetric characterization and air gap evaluation.

The work investigates the implementation of personalized radiotherapy boluses by means of additive manufacturing technologies. Boluses materials that are currently used need an excessive amount of human intervention which leads to reduced repeatability in terms of dosimetry. Additive manufacturing can solve this problem by eliminating the human factor in the process of fabrication. Planar boluses with fixed geometry and personalized boluses printed starting from a computed tomography scan of a radiotherapy phantom were produced. First, a dosimetric characterization study on planar bolus designs to quantify the effects of print parameters such as infill density and geometry on the radiation beam was made. Secondly, a volumetric quantification of air gap between the bolus and the skin of the patient as well as dosimetric analyses were performed. The optimization process according to the obtained dosimetric and airgap results allowed us to find a combination of parameters to have the 3D-printed bolus performing similarly to that in conventional use. These preliminary results confirm those in the relevant literature, with 3D-printed boluses showing a dosimetric performance similar to conventional boluses with the additional advantage of being perfectly conformed to the patient geometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Optimum delineation of skin structure for dose calculation with the linear Boltzmann transport equation algorithm in radiotherapy treatment planning. Parameter optimisation for image acquisition and stacking in carbon dioxide digital subtraction angiography. Estimation of the lateral variation of photon beam energy spectra using the percentage depth dose reconstruction method. Joint segmentation of sternocleidomastoid and skeletal muscles in computed tomography images using a multiclass learning approach. Correction: Recommendation for reducing the crystalline lens exposure dose by reducing imaging field width in cone-beam computed tomography for image-guided radiation therapy: an anthropomorphic phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1