PET 双能量 CT 成像的可行性:首个物理模型和患者结果。

ArXiv Pub Date : 2024-11-19
Yansong Zhu, Siqi Li, Zhaoheng Xie, Edwin K Leung, Reimund Bayerlein, Negar Omidvari, Yasser G Abdelhafez, Simon R Cherry, Jinyi Qi, Ramsey D Badawi, Benjamin A Spencer, Guobao Wang
{"title":"PET 双能量 CT 成像的可行性:首个物理模型和患者结果。","authors":"Yansong Zhu, Siqi Li, Zhaoheng Xie, Edwin K Leung, Reimund Bayerlein, Negar Omidvari, Yasser G Abdelhafez, Simon R Cherry, Jinyi Qi, Ramsey D Badawi, Benjamin A Spencer, Guobao Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862937/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient results.\",\"authors\":\"Yansong Zhu, Siqi Li, Zhaoheng Xie, Edwin K Leung, Reimund Bayerlein, Negar Omidvari, Yasser G Abdelhafez, Simon R Cherry, Jinyi Qi, Ramsey D Badawi, Benjamin A Spencer, Guobao Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射计算机断层扫描(PET/CT)中的 X 射线计算机断层扫描(CT)通常使用单一能量进行操作,因此存在缺乏组织成分信息的局限性。双能量(DE)光谱 CT 可通过使用两种不同的 X 射线能量进行物质分解,可与 PET 结合使用以改进多模态成像,但需要升级硬件,或因增加第二次 X 射线 CT 扫描而增加辐射剂量。最近提出的正电子发射计算机断层成像(PET-enabled DECT)方法可使用传统的 PET/CT 扫描仪进行双能量光谱成像,而无需进行第二次 X 射线 CT 扫描。利用最大似然衰减和活动(MLAA)方法,可从现有的飞行时间 PET 数据中生成 511 千伏的伽马射线 CT(gCT)图像,然后与低能量 X 射线 CT 图像相结合,形成双能量光谱成像。为了提高 gCT 的图像质量,还进一步提出了一种核 MLAA 方法,将 X 射线 CT 作为先验信息。这种支持 PET 的 DECT 概念已通过模拟研究得到验证,但尚未通过三维真实数据得到验证。在这项工作中,我们开发了从 PET 数据重建 gCT 的通用开源实施方案,并利用该实施方案在 uEXPLORER 全身 PET/CT 系统上进行了首次真实数据验证,包括物理模型研究和人体研究。这些结果证明了该方法在光谱成像和材料分解方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient results.

X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1