利用不同的培养条件改变间充质干细胞的炎症特征。

IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Regenerative medicine Pub Date : 2024-02-01 Epub Date: 2024-02-15 DOI:10.2217/rme-2023-0162
Alison A Smith, Charles F Bellows
{"title":"利用不同的培养条件改变间充质干细胞的炎症特征。","authors":"Alison A Smith, Charles F Bellows","doi":"10.2217/rme-2023-0162","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Mesenchymal stem cells (MSCs) are pluripotent cells with significant therapeutic potential. The objective of this study was to examine the inflammatory profile of MSCs cultured under different conditions. <b>Methods:</b> MSCs were cultured by three strategies: seeding on an extracellular matrix (ECM), spheroids in static culture and spheroids in a bioreactor. Paracrine factors and CD206, a marker of M2 macrophage phenotype, were measured. <b>Results:</b> MSCs grown as spheroids in a bioreactor produced more IL-6 and IL-8 (p < 0.05). Supernatant collected from spheroids under both culture conditions increased the M2 macrophage phenotype almost twofold. <b>Conclusion:</b> Results indicate that the inflammatory profile of the supernatant collected from MSCs can be modified through culture conditions which has impacts for the future of regenerative medicine.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"83-91"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of the inflammatory profile of mesenchymal stem cells using different culture conditions.\",\"authors\":\"Alison A Smith, Charles F Bellows\",\"doi\":\"10.2217/rme-2023-0162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Mesenchymal stem cells (MSCs) are pluripotent cells with significant therapeutic potential. The objective of this study was to examine the inflammatory profile of MSCs cultured under different conditions. <b>Methods:</b> MSCs were cultured by three strategies: seeding on an extracellular matrix (ECM), spheroids in static culture and spheroids in a bioreactor. Paracrine factors and CD206, a marker of M2 macrophage phenotype, were measured. <b>Results:</b> MSCs grown as spheroids in a bioreactor produced more IL-6 and IL-8 (p < 0.05). Supernatant collected from spheroids under both culture conditions increased the M2 macrophage phenotype almost twofold. <b>Conclusion:</b> Results indicate that the inflammatory profile of the supernatant collected from MSCs can be modified through culture conditions which has impacts for the future of regenerative medicine.</p>\",\"PeriodicalId\":21043,\"journal\":{\"name\":\"Regenerative medicine\",\"volume\":\" \",\"pages\":\"83-91\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2217/rme-2023-0162\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2217/rme-2023-0162","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目的:间充质干细胞(MSCs)是具有巨大治疗潜力的多能细胞。本研究旨在检测在不同条件下培养的间充质干细胞的炎症特征。方法:通过三种策略培养间充质干细胞:在细胞外基质(ECM)上播种、静态培养球体和生物反应器中培养球体。测量旁分泌因子和 M2 巨噬细胞表型标记物 CD206。结果在生物反应器中以球形培养的间充质干细胞产生更多的IL-6和IL-8(p 结论:间充质干细胞在静态培养和生物反应器球形培养中产生的炎症特征更明显:结果表明,间充质干细胞上清液的炎症特征可通过培养条件改变,这对未来的再生医学有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification of the inflammatory profile of mesenchymal stem cells using different culture conditions.

Aim: Mesenchymal stem cells (MSCs) are pluripotent cells with significant therapeutic potential. The objective of this study was to examine the inflammatory profile of MSCs cultured under different conditions. Methods: MSCs were cultured by three strategies: seeding on an extracellular matrix (ECM), spheroids in static culture and spheroids in a bioreactor. Paracrine factors and CD206, a marker of M2 macrophage phenotype, were measured. Results: MSCs grown as spheroids in a bioreactor produced more IL-6 and IL-8 (p < 0.05). Supernatant collected from spheroids under both culture conditions increased the M2 macrophage phenotype almost twofold. Conclusion: Results indicate that the inflammatory profile of the supernatant collected from MSCs can be modified through culture conditions which has impacts for the future of regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative medicine
Regenerative medicine 医学-工程:生物医学
CiteScore
4.20
自引率
3.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization. Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community. Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.
期刊最新文献
Bone marrow aspirate concentrate for the treatment of fifth metatarsal head stress fracture: a case report. Proliferation and differentiation of Wharton's jelly-derived mesenchymal stem cells on prgf-treated hydrogel scaffold. ATMP clinical trials in the UK. Industry updates from the field of stem cell research and regenerative medicine in September 2024. Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1