{"title":"利用不同的培养条件改变间充质干细胞的炎症特征。","authors":"Alison A Smith, Charles F Bellows","doi":"10.2217/rme-2023-0162","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Mesenchymal stem cells (MSCs) are pluripotent cells with significant therapeutic potential. The objective of this study was to examine the inflammatory profile of MSCs cultured under different conditions. <b>Methods:</b> MSCs were cultured by three strategies: seeding on an extracellular matrix (ECM), spheroids in static culture and spheroids in a bioreactor. Paracrine factors and CD206, a marker of M2 macrophage phenotype, were measured. <b>Results:</b> MSCs grown as spheroids in a bioreactor produced more IL-6 and IL-8 (p < 0.05). Supernatant collected from spheroids under both culture conditions increased the M2 macrophage phenotype almost twofold. <b>Conclusion:</b> Results indicate that the inflammatory profile of the supernatant collected from MSCs can be modified through culture conditions which has impacts for the future of regenerative medicine.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"83-91"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of the inflammatory profile of mesenchymal stem cells using different culture conditions.\",\"authors\":\"Alison A Smith, Charles F Bellows\",\"doi\":\"10.2217/rme-2023-0162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Mesenchymal stem cells (MSCs) are pluripotent cells with significant therapeutic potential. The objective of this study was to examine the inflammatory profile of MSCs cultured under different conditions. <b>Methods:</b> MSCs were cultured by three strategies: seeding on an extracellular matrix (ECM), spheroids in static culture and spheroids in a bioreactor. Paracrine factors and CD206, a marker of M2 macrophage phenotype, were measured. <b>Results:</b> MSCs grown as spheroids in a bioreactor produced more IL-6 and IL-8 (p < 0.05). Supernatant collected from spheroids under both culture conditions increased the M2 macrophage phenotype almost twofold. <b>Conclusion:</b> Results indicate that the inflammatory profile of the supernatant collected from MSCs can be modified through culture conditions which has impacts for the future of regenerative medicine.</p>\",\"PeriodicalId\":21043,\"journal\":{\"name\":\"Regenerative medicine\",\"volume\":\" \",\"pages\":\"83-91\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2217/rme-2023-0162\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2217/rme-2023-0162","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Modification of the inflammatory profile of mesenchymal stem cells using different culture conditions.
Aim: Mesenchymal stem cells (MSCs) are pluripotent cells with significant therapeutic potential. The objective of this study was to examine the inflammatory profile of MSCs cultured under different conditions. Methods: MSCs were cultured by three strategies: seeding on an extracellular matrix (ECM), spheroids in static culture and spheroids in a bioreactor. Paracrine factors and CD206, a marker of M2 macrophage phenotype, were measured. Results: MSCs grown as spheroids in a bioreactor produced more IL-6 and IL-8 (p < 0.05). Supernatant collected from spheroids under both culture conditions increased the M2 macrophage phenotype almost twofold. Conclusion: Results indicate that the inflammatory profile of the supernatant collected from MSCs can be modified through culture conditions which has impacts for the future of regenerative medicine.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.