{"title":"用于阿尔茨海默病图像分割的新型深度学习图注意网络","authors":"Md Easin Hasan , Amy Wagler","doi":"10.1016/j.health.2024.100310","DOIUrl":null,"url":null,"abstract":"<div><p>Neuronal cell segmentation identifies and separates individual neurons in an image, typically to study their properties or analyze their organization in the nervous system. This is significant because neurological problems and diseases can only be treated effectively when the structure and function of neurons are understood. The proposed method is based on convolutional neural networks (CNNs) and graph attention networks (GATs) for segmenting biomedical images. A contracting path built upon a couple of convolution layers and max pooling is included in the architecture to capture context. After that, the GATs are applied to the captured context. In GATs, each node in the graph is associated with a vector of hidden features, and the model calculates attention coefficients between pairs of nodes. These attention coefficients are learned during training and can be used to weigh the contribution of each node’s features to the representation of the graph. An expanding path that utilizes the outputs generated by GATs paves the way for exact segmentation. The dataset comprises 606 microscopic images, mainly categorized into different cell types (astrocytes, cortex, and SHSY5Y). By implementing our proposed U-GAT algorithm, we obtained the highest accuracy of 86.5% and an F1 score of 0.719 compared to the CNN, U-Net, SegResNet, SegNet VGG16, and GAT benchmarking algorithms. This proposed method could help researchers in the biotech industry develop novel drugs since a more accurate deep-learning method is essential for segmenting complex images like neuronal images.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100310"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000121/pdfft?md5=bc3dc76aa6d276d3e986f4f45e80a2ae&pid=1-s2.0-S2772442524000121-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel deep learning graph attention network for Alzheimer’s disease image segmentation\",\"authors\":\"Md Easin Hasan , Amy Wagler\",\"doi\":\"10.1016/j.health.2024.100310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuronal cell segmentation identifies and separates individual neurons in an image, typically to study their properties or analyze their organization in the nervous system. This is significant because neurological problems and diseases can only be treated effectively when the structure and function of neurons are understood. The proposed method is based on convolutional neural networks (CNNs) and graph attention networks (GATs) for segmenting biomedical images. A contracting path built upon a couple of convolution layers and max pooling is included in the architecture to capture context. After that, the GATs are applied to the captured context. In GATs, each node in the graph is associated with a vector of hidden features, and the model calculates attention coefficients between pairs of nodes. These attention coefficients are learned during training and can be used to weigh the contribution of each node’s features to the representation of the graph. An expanding path that utilizes the outputs generated by GATs paves the way for exact segmentation. The dataset comprises 606 microscopic images, mainly categorized into different cell types (astrocytes, cortex, and SHSY5Y). By implementing our proposed U-GAT algorithm, we obtained the highest accuracy of 86.5% and an F1 score of 0.719 compared to the CNN, U-Net, SegResNet, SegNet VGG16, and GAT benchmarking algorithms. This proposed method could help researchers in the biotech industry develop novel drugs since a more accurate deep-learning method is essential for segmenting complex images like neuronal images.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000121/pdfft?md5=bc3dc76aa6d276d3e986f4f45e80a2ae&pid=1-s2.0-S2772442524000121-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
神经元细胞分割可识别和分离图像中的单个神经元,通常用于研究神经元的特性或分析神经元在神经系统中的组织结构。这一点意义重大,因为只有了解神经元的结构和功能,才能有效治疗神经系统问题和疾病。所提出的方法基于卷积神经网络(CNN)和图注意网络(GAT),用于分割生物医学图像。为了捕捉上下文,架构中包含了一条建立在几个卷积层和最大池化基础上的收缩路径。然后,将 GAT 应用于捕获的上下文。在 GATs 中,图中的每个节点都与隐藏特征的向量相关联,模型计算节点对之间的注意力系数。这些注意力系数是在训练过程中学习到的,可用于权衡每个节点的特征对图形表示的贡献。利用 GAT 生成的输出的扩展路径为精确分割铺平了道路。数据集包括 606 幅显微图像,主要分为不同的细胞类型(星形胶质细胞、皮层和 SHSY5Y)。通过实施我们提出的 U-GAT 算法,与 CNN、U-Net、SegResNet、SegNet VGG16 和 GAT 基准算法相比,我们获得了 86.5% 的最高准确率和 0.719 的 F1 分数。由于更准确的深度学习方法对于分割神经元图像等复杂图像至关重要,因此该方法有助于生物技术行业的研究人员开发新型药物。
A novel deep learning graph attention network for Alzheimer’s disease image segmentation
Neuronal cell segmentation identifies and separates individual neurons in an image, typically to study their properties or analyze their organization in the nervous system. This is significant because neurological problems and diseases can only be treated effectively when the structure and function of neurons are understood. The proposed method is based on convolutional neural networks (CNNs) and graph attention networks (GATs) for segmenting biomedical images. A contracting path built upon a couple of convolution layers and max pooling is included in the architecture to capture context. After that, the GATs are applied to the captured context. In GATs, each node in the graph is associated with a vector of hidden features, and the model calculates attention coefficients between pairs of nodes. These attention coefficients are learned during training and can be used to weigh the contribution of each node’s features to the representation of the graph. An expanding path that utilizes the outputs generated by GATs paves the way for exact segmentation. The dataset comprises 606 microscopic images, mainly categorized into different cell types (astrocytes, cortex, and SHSY5Y). By implementing our proposed U-GAT algorithm, we obtained the highest accuracy of 86.5% and an F1 score of 0.719 compared to the CNN, U-Net, SegResNet, SegNet VGG16, and GAT benchmarking algorithms. This proposed method could help researchers in the biotech industry develop novel drugs since a more accurate deep-learning method is essential for segmenting complex images like neuronal images.