Maxim Sharaev , Maxim Nekrashevich , Daria Kostanian , Victoria Voinova , Olga Sysoeva
{"title":"听觉事件相关电位能准确区分患有雷特综合征的女孩和发育正常的同龄人:机器学习研究","authors":"Maxim Sharaev , Maxim Nekrashevich , Daria Kostanian , Victoria Voinova , Olga Sysoeva","doi":"10.1016/j.cogsys.2024.101214","DOIUrl":null,"url":null,"abstract":"<div><p>Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused by mutation in the <em>MECP2</em> gene. No cures are still available, but several clinical trials are ongoing. Here we examine neurophysiological correlates of auditory processing for ability to differentiate patients with RTT from typically developing (TD) peers applying standard machine learning (ML) methods and pipelines. Capitalized on the available event-related potential (ERP) data recorded in response to tone presented at different rates (stimulus onset asynchrony 900, 1800 and 3600 ms) from 24 patients with RTT and 27 their TD peer. We considered the most common ML models that are widely used for classification tasks. These include both linear models (logistic regression, support-vector machine with linear kernel) and tree-based nonlinear models (random forest, gradient boosting). Based on these methods we were able to differentiate RTT from TD children with high accuracy (with up to 0.94 ROC-AUC score), which was evidently higher at the fastest presentation rate. Importance analysis and perturbation importance pointed out that the most important feature for classification is P2-N2 peak-to-peak amplitude, consistently across the approaches and blocks with different presentation rate. The results suggest the unique pattern of ERP characteristics for RTT and points to features of importance. The results might be relevant for establishing outcome measures for clinical trials.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"85 ","pages":"Article 101214"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auditory event-related potential differentiates girls with Rett syndrome from their typically-developing peers with high accuracy: Machine learning study\",\"authors\":\"Maxim Sharaev , Maxim Nekrashevich , Daria Kostanian , Victoria Voinova , Olga Sysoeva\",\"doi\":\"10.1016/j.cogsys.2024.101214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused by mutation in the <em>MECP2</em> gene. No cures are still available, but several clinical trials are ongoing. Here we examine neurophysiological correlates of auditory processing for ability to differentiate patients with RTT from typically developing (TD) peers applying standard machine learning (ML) methods and pipelines. Capitalized on the available event-related potential (ERP) data recorded in response to tone presented at different rates (stimulus onset asynchrony 900, 1800 and 3600 ms) from 24 patients with RTT and 27 their TD peer. We considered the most common ML models that are widely used for classification tasks. These include both linear models (logistic regression, support-vector machine with linear kernel) and tree-based nonlinear models (random forest, gradient boosting). Based on these methods we were able to differentiate RTT from TD children with high accuracy (with up to 0.94 ROC-AUC score), which was evidently higher at the fastest presentation rate. Importance analysis and perturbation importance pointed out that the most important feature for classification is P2-N2 peak-to-peak amplitude, consistently across the approaches and blocks with different presentation rate. The results suggest the unique pattern of ERP characteristics for RTT and points to features of importance. The results might be relevant for establishing outcome measures for clinical trials.</p></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"85 \",\"pages\":\"Article 101214\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138904172400007X\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172400007X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Auditory event-related potential differentiates girls with Rett syndrome from their typically-developing peers with high accuracy: Machine learning study
Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused by mutation in the MECP2 gene. No cures are still available, but several clinical trials are ongoing. Here we examine neurophysiological correlates of auditory processing for ability to differentiate patients with RTT from typically developing (TD) peers applying standard machine learning (ML) methods and pipelines. Capitalized on the available event-related potential (ERP) data recorded in response to tone presented at different rates (stimulus onset asynchrony 900, 1800 and 3600 ms) from 24 patients with RTT and 27 their TD peer. We considered the most common ML models that are widely used for classification tasks. These include both linear models (logistic regression, support-vector machine with linear kernel) and tree-based nonlinear models (random forest, gradient boosting). Based on these methods we were able to differentiate RTT from TD children with high accuracy (with up to 0.94 ROC-AUC score), which was evidently higher at the fastest presentation rate. Importance analysis and perturbation importance pointed out that the most important feature for classification is P2-N2 peak-to-peak amplitude, consistently across the approaches and blocks with different presentation rate. The results suggest the unique pattern of ERP characteristics for RTT and points to features of importance. The results might be relevant for establishing outcome measures for clinical trials.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.