对 "基因 "评论的回应:评价 "的评论。

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Progress in Biophysics & Molecular Biology Pub Date : 2024-02-14 DOI:10.1016/j.pbiomolbio.2024.02.002
Keith Baverstock
{"title":"对 \"基因 \"评论的回应:评价 \"的评论。","authors":"Keith Baverstock","doi":"10.1016/j.pbiomolbio.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>The central conclusions of “The Gene: An Appraisal” are that genetic variance does not underpin biological evolution, and, therefore, that genes are not Mendel's units of inheritance. In this response, I will address the criticisms I have received via commentaries on that paper by defending the following statements:</p><p>1. Epistasis does not explain the power-law fitness profile of the Long-Term Evolution Experiment (LTEE). The data from the evolution of <em>natural systems</em> displays the power-law form ubiquitously. Epistasis plays no role in evolution.</p><p>2. The common characteristics of living things (natural systems) are described by the principle of least action in de Maupertuis's original form, which is synonymous with the 2nd law of thermodynamics and Newton's 2nd law of motion in its complete form, i.e., F = dp/dt. Organisms strive to achieve free energy balance with their environments.</p><p>3. Based on an appraisal of the scientific environment between 1880 and 1911, I conclude that Johannsen's genotype conception was perhaps, the only option available to him.</p><p>4. The power-law fitness profile of the LTEE falsifies Fisher's Genetical Theory of Natural Selection, Johannsen's genotype conception, and the idea that ‘Darwinian evolution’ is an exception to the generic thermodynamic process of evolution in natural systems.</p><p>5. The use of the technique of genome-wide association to identify the causes and the likelihoods of inherited common diseases and behavioural traits is a ‘wild goose chase’ because genes are not the units of inheritance.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 31-42"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007961072400018X/pdfft?md5=e7aa3c3acf34cfb11fa23fbe39cdab86&pid=1-s2.0-S007961072400018X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Responses to commentaries on “The gene: An appraisal”\",\"authors\":\"Keith Baverstock\",\"doi\":\"10.1016/j.pbiomolbio.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The central conclusions of “The Gene: An Appraisal” are that genetic variance does not underpin biological evolution, and, therefore, that genes are not Mendel's units of inheritance. In this response, I will address the criticisms I have received via commentaries on that paper by defending the following statements:</p><p>1. Epistasis does not explain the power-law fitness profile of the Long-Term Evolution Experiment (LTEE). The data from the evolution of <em>natural systems</em> displays the power-law form ubiquitously. Epistasis plays no role in evolution.</p><p>2. The common characteristics of living things (natural systems) are described by the principle of least action in de Maupertuis's original form, which is synonymous with the 2nd law of thermodynamics and Newton's 2nd law of motion in its complete form, i.e., F = dp/dt. Organisms strive to achieve free energy balance with their environments.</p><p>3. Based on an appraisal of the scientific environment between 1880 and 1911, I conclude that Johannsen's genotype conception was perhaps, the only option available to him.</p><p>4. The power-law fitness profile of the LTEE falsifies Fisher's Genetical Theory of Natural Selection, Johannsen's genotype conception, and the idea that ‘Darwinian evolution’ is an exception to the generic thermodynamic process of evolution in natural systems.</p><p>5. The use of the technique of genome-wide association to identify the causes and the likelihoods of inherited common diseases and behavioural traits is a ‘wild goose chase’ because genes are not the units of inheritance.</p></div>\",\"PeriodicalId\":54554,\"journal\":{\"name\":\"Progress in Biophysics & Molecular Biology\",\"volume\":\"188 \",\"pages\":\"Pages 31-42\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S007961072400018X/pdfft?md5=e7aa3c3acf34cfb11fa23fbe39cdab86&pid=1-s2.0-S007961072400018X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biophysics & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007961072400018X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007961072400018X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因:评析》一文的核心结论是,遗传变异不是生物进化的基础,因此,基因不是孟德尔的遗传单位。在这篇回应中,我将针对通过对该论文的评论而收到的批评,为以下声明进行辩护:1.表观遗传并不能解释长期进化实验(LTEE)的幂律适合度曲线。自然系统的进化数据普遍显示出幂律形式。表观遗传在进化中不起作用。2.生物(自然系统)的共同特征由德-莫佩尔特伊斯(de Maupertuis)原始形式的最小作用原理描述,该原理与热力学第二定律和牛顿运动第二定律的完整形式同义,即 F = dp/dt。生物体努力实现与环境的自由能量平衡。3.根据对 1880 年至 1911 年期间科学环境的评估,我得出结论,约翰森的基因型构想或许是他唯一的选择。4.4. LTEE 的幂律适合度曲线证伪了费雪的自然选择基因理论、约翰森的基因型概念,以及 "达尔文进化论 "是自然系统中一般热力学进化过程的例外这一观点。5.利用全基因组关联技术来确定遗传性常见疾病和行为特征的原因和可能性是一种 "雁过拔毛 "的做法,因为基因并不是遗传的单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Responses to commentaries on “The gene: An appraisal”

The central conclusions of “The Gene: An Appraisal” are that genetic variance does not underpin biological evolution, and, therefore, that genes are not Mendel's units of inheritance. In this response, I will address the criticisms I have received via commentaries on that paper by defending the following statements:

1. Epistasis does not explain the power-law fitness profile of the Long-Term Evolution Experiment (LTEE). The data from the evolution of natural systems displays the power-law form ubiquitously. Epistasis plays no role in evolution.

2. The common characteristics of living things (natural systems) are described by the principle of least action in de Maupertuis's original form, which is synonymous with the 2nd law of thermodynamics and Newton's 2nd law of motion in its complete form, i.e., F = dp/dt. Organisms strive to achieve free energy balance with their environments.

3. Based on an appraisal of the scientific environment between 1880 and 1911, I conclude that Johannsen's genotype conception was perhaps, the only option available to him.

4. The power-law fitness profile of the LTEE falsifies Fisher's Genetical Theory of Natural Selection, Johannsen's genotype conception, and the idea that ‘Darwinian evolution’ is an exception to the generic thermodynamic process of evolution in natural systems.

5. The use of the technique of genome-wide association to identify the causes and the likelihoods of inherited common diseases and behavioural traits is a ‘wild goose chase’ because genes are not the units of inheritance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biophysics & Molecular Biology
Progress in Biophysics & Molecular Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
7.90%
发文量
85
审稿时长
85 days
期刊介绍: Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.
期刊最新文献
Roles of gastric cancer-derived exosomes in the occurrence of metastatic hepatocellular carcinoma. Vinculin: A new target for the diagnosis and treatment of disease. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. The regulatory role of integrin in gastric cancer tumor microenvironment and drug resistance. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1