Ahmed I. Foudah, Mohammad Ayman Salkini, Mohammed H. Alqarni, Aftab Alam
{"title":"负载芒果苷的固体脂质纳米颗粒的制备和抗糖尿病活性评价","authors":"Ahmed I. Foudah, Mohammad Ayman Salkini, Mohammed H. Alqarni, Aftab Alam","doi":"10.1016/j.sjbs.2024.103946","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to develop and optimize mangiferin-loaded solid lipid nanoparticles (MG-SLNs) using the microemulsion technique and ultrasonication. The MG-SLNs were composed of Labrafil M 2130 CS, MG, ethanol, Tween 80, and water. The optimized MG-SLNs exhibited a particle size of 138.37 ± 3.39 nm, polydispersity index of 0.247 ± 0.023, entrapment efficiency of 84.37 ± 2.43 %, and zeta potential of 18.87 ± 2.42 mV. Drug release studies showed a two-fold increase in the release of MG from SLNs compared to the solution. Confocal images indicated deeper permeation of MG-SLNs, highlighting their potential. Molecular docking confirmed mangiferin's inhibitory activity against α-amylase, consistent with previous findings. In vitro studies showed that MG-SLNs inhibited α-amylase activity by 55.43 ± 6.11 %, α-glucosidase activity by 68.76 ± 3.14 %, and exhibited promising antidiabetic activities. In a rat model, MG-SLNs significantly and sustainably reduced blood glucose levels for up to 12 h. Total cholesterol and triglycerides decreased, while high-density lipoprotein cholesterol increased. Both MG-SOL and MG-SLNs reduced SGOT and SGPT levels, with MG-SLNs showing a more significant reduction in SGOT compared to MG-SOL. Overall, the biochemical results indicated that both formulations improved diabetes-associated alterations. In conclusion, the study suggests that loading MG in SLNs using the newly developed approach could be an efficient oral treatment for diabetes, offering sustained blood glucose reduction and positive effects on lipid profiles and liver enzymes.</p></div>","PeriodicalId":21540,"journal":{"name":"Saudi Journal of Biological Sciences","volume":"31 4","pages":"Article 103946"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319562X2400024X/pdfft?md5=1e8800339e23e3004256a92b1cecebce&pid=1-s2.0-S1319562X2400024X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preparation and evaluation of antidiabetic activity of mangiferin-loaded solid lipid nanoparticles\",\"authors\":\"Ahmed I. Foudah, Mohammad Ayman Salkini, Mohammed H. Alqarni, Aftab Alam\",\"doi\":\"10.1016/j.sjbs.2024.103946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to develop and optimize mangiferin-loaded solid lipid nanoparticles (MG-SLNs) using the microemulsion technique and ultrasonication. The MG-SLNs were composed of Labrafil M 2130 CS, MG, ethanol, Tween 80, and water. The optimized MG-SLNs exhibited a particle size of 138.37 ± 3.39 nm, polydispersity index of 0.247 ± 0.023, entrapment efficiency of 84.37 ± 2.43 %, and zeta potential of 18.87 ± 2.42 mV. Drug release studies showed a two-fold increase in the release of MG from SLNs compared to the solution. Confocal images indicated deeper permeation of MG-SLNs, highlighting their potential. Molecular docking confirmed mangiferin's inhibitory activity against α-amylase, consistent with previous findings. In vitro studies showed that MG-SLNs inhibited α-amylase activity by 55.43 ± 6.11 %, α-glucosidase activity by 68.76 ± 3.14 %, and exhibited promising antidiabetic activities. In a rat model, MG-SLNs significantly and sustainably reduced blood glucose levels for up to 12 h. Total cholesterol and triglycerides decreased, while high-density lipoprotein cholesterol increased. Both MG-SOL and MG-SLNs reduced SGOT and SGPT levels, with MG-SLNs showing a more significant reduction in SGOT compared to MG-SOL. Overall, the biochemical results indicated that both formulations improved diabetes-associated alterations. In conclusion, the study suggests that loading MG in SLNs using the newly developed approach could be an efficient oral treatment for diabetes, offering sustained blood glucose reduction and positive effects on lipid profiles and liver enzymes.</p></div>\",\"PeriodicalId\":21540,\"journal\":{\"name\":\"Saudi Journal of Biological Sciences\",\"volume\":\"31 4\",\"pages\":\"Article 103946\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319562X2400024X/pdfft?md5=1e8800339e23e3004256a92b1cecebce&pid=1-s2.0-S1319562X2400024X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Journal of Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319562X2400024X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319562X2400024X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Preparation and evaluation of antidiabetic activity of mangiferin-loaded solid lipid nanoparticles
This study aimed to develop and optimize mangiferin-loaded solid lipid nanoparticles (MG-SLNs) using the microemulsion technique and ultrasonication. The MG-SLNs were composed of Labrafil M 2130 CS, MG, ethanol, Tween 80, and water. The optimized MG-SLNs exhibited a particle size of 138.37 ± 3.39 nm, polydispersity index of 0.247 ± 0.023, entrapment efficiency of 84.37 ± 2.43 %, and zeta potential of 18.87 ± 2.42 mV. Drug release studies showed a two-fold increase in the release of MG from SLNs compared to the solution. Confocal images indicated deeper permeation of MG-SLNs, highlighting their potential. Molecular docking confirmed mangiferin's inhibitory activity against α-amylase, consistent with previous findings. In vitro studies showed that MG-SLNs inhibited α-amylase activity by 55.43 ± 6.11 %, α-glucosidase activity by 68.76 ± 3.14 %, and exhibited promising antidiabetic activities. In a rat model, MG-SLNs significantly and sustainably reduced blood glucose levels for up to 12 h. Total cholesterol and triglycerides decreased, while high-density lipoprotein cholesterol increased. Both MG-SOL and MG-SLNs reduced SGOT and SGPT levels, with MG-SLNs showing a more significant reduction in SGOT compared to MG-SOL. Overall, the biochemical results indicated that both formulations improved diabetes-associated alterations. In conclusion, the study suggests that loading MG in SLNs using the newly developed approach could be an efficient oral treatment for diabetes, offering sustained blood glucose reduction and positive effects on lipid profiles and liver enzymes.
期刊介绍:
Saudi Journal of Biological Sciences is an English language, peer-reviewed scholarly publication in the area of biological sciences. Saudi Journal of Biological Sciences publishes original papers, reviews and short communications on, but not limited to:
• Biology, Ecology and Ecosystems, Environmental and Biodiversity
• Conservation
• Microbiology
• Physiology
• Genetics and Epidemiology
Saudi Journal of Biological Sciences is the official publication of the Saudi Society for Biological Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.