Linthoingambi Ningombam , Techi Mana , Gemin Apum , Rina Ningthoujam , Yengkhom Disco Singh
{"title":"纳米生物修复:以土壤、水和重金属为重点的环境净化前瞻性方法","authors":"Linthoingambi Ningombam , Techi Mana , Gemin Apum , Rina Ningthoujam , Yengkhom Disco Singh","doi":"10.1016/j.enmm.2024.100931","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating influx of harmful contaminants and toxic metals into the environment, fueled by rapid technological advancements and population growth, has emerged as a pressing concern. There are numerous physical, chemical, and biological remediation technologies, but their efficacy often falters due to intricate processes. In recent years, many new technologies have been developed to remove toxic pollutants. Among the technologies, bioremediation in combination with nanotechnology is considered the most effective method. Nano-bioremediation is a modern technique of employing plants and microbes for the disintegration of toxic materials, either ex situ or in situ, to combat environmental contamination. Nano-bioremediation provides a versatile array of solutions for reducing pollutants in groundwater, wastewater, and sediment contaminated with heavy metals and hydrocarbons. Silver (Ag) nanoparticles, in particular, have gained recognition as effective catalysts for disinfection across air, water, and surfaces. Its utilization promises a less hazardous, efficient, and sustainable means to mitigate the menace of toxic contaminants in the environment.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"21 ","pages":"Article 100931"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-bioremediation: A prospective approach for environmental decontamination in focus to soil, water and heavy metals\",\"authors\":\"Linthoingambi Ningombam , Techi Mana , Gemin Apum , Rina Ningthoujam , Yengkhom Disco Singh\",\"doi\":\"10.1016/j.enmm.2024.100931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The escalating influx of harmful contaminants and toxic metals into the environment, fueled by rapid technological advancements and population growth, has emerged as a pressing concern. There are numerous physical, chemical, and biological remediation technologies, but their efficacy often falters due to intricate processes. In recent years, many new technologies have been developed to remove toxic pollutants. Among the technologies, bioremediation in combination with nanotechnology is considered the most effective method. Nano-bioremediation is a modern technique of employing plants and microbes for the disintegration of toxic materials, either ex situ or in situ, to combat environmental contamination. Nano-bioremediation provides a versatile array of solutions for reducing pollutants in groundwater, wastewater, and sediment contaminated with heavy metals and hydrocarbons. Silver (Ag) nanoparticles, in particular, have gained recognition as effective catalysts for disinfection across air, water, and surfaces. Its utilization promises a less hazardous, efficient, and sustainable means to mitigate the menace of toxic contaminants in the environment.</p></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"21 \",\"pages\":\"Article 100931\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224000199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Nano-bioremediation: A prospective approach for environmental decontamination in focus to soil, water and heavy metals
The escalating influx of harmful contaminants and toxic metals into the environment, fueled by rapid technological advancements and population growth, has emerged as a pressing concern. There are numerous physical, chemical, and biological remediation technologies, but their efficacy often falters due to intricate processes. In recent years, many new technologies have been developed to remove toxic pollutants. Among the technologies, bioremediation in combination with nanotechnology is considered the most effective method. Nano-bioremediation is a modern technique of employing plants and microbes for the disintegration of toxic materials, either ex situ or in situ, to combat environmental contamination. Nano-bioremediation provides a versatile array of solutions for reducing pollutants in groundwater, wastewater, and sediment contaminated with heavy metals and hydrocarbons. Silver (Ag) nanoparticles, in particular, have gained recognition as effective catalysts for disinfection across air, water, and surfaces. Its utilization promises a less hazardous, efficient, and sustainable means to mitigate the menace of toxic contaminants in the environment.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation