用突触组织者CPTX进行脊髓损伤的人诱导多能干细胞衍生神经干/祖细胞体外基因治疗。

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Reports Pub Date : 2024-03-12 Epub Date: 2024-02-15 DOI:10.1016/j.stemcr.2024.01.007
Yusuke Saijo, Narihito Nagoshi, Momotaro Kawai, Takahiro Kitagawa, Yu Suematsu, Masahiro Ozaki, Munehisa Shinozaki, Jun Kohyama, Shinsuke Shibata, Kosei Takeuchi, Masaya Nakamura, Michisuke Yuzaki, Hideyuki Okano
{"title":"用突触组织者CPTX进行脊髓损伤的人诱导多能干细胞衍生神经干/祖细胞体外基因治疗。","authors":"Yusuke Saijo, Narihito Nagoshi, Momotaro Kawai, Takahiro Kitagawa, Yu Suematsu, Masahiro Ozaki, Munehisa Shinozaki, Jun Kohyama, Shinsuke Shibata, Kosei Takeuchi, Masaya Nakamura, Michisuke Yuzaki, Hideyuki Okano","doi":"10.1016/j.stemcr.2024.01.007","DOIUrl":null,"url":null,"abstract":"<p><p>The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937157/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human-induced pluripotent stem cell-derived neural stem/progenitor cell ex vivo gene therapy with synaptic organizer CPTX for spinal cord injury.\",\"authors\":\"Yusuke Saijo, Narihito Nagoshi, Momotaro Kawai, Takahiro Kitagawa, Yu Suematsu, Masahiro Ozaki, Munehisa Shinozaki, Jun Kohyama, Shinsuke Shibata, Kosei Takeuchi, Masaya Nakamura, Michisuke Yuzaki, Hideyuki Okano\",\"doi\":\"10.1016/j.stemcr.2024.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937157/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2024.01.007\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.01.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

移植源自人类诱导多能干细胞(hiPSCs)的神经干/祖细胞(NS/PCs)已在脊髓损伤(SCI)模型动物中显示出前景。在移植神经元和宿主神经元之间建立功能性突触连接对运动功能的恢复至关重要。为了提高治疗效果,我们开发了一种体外基因疗法,旨在通过在 hiPSC-NS/PCs 中表达合成兴奋性突触组织者 CPTX 来促进突触的形成。我们利用免疫受损的转基因 SCI 大鼠模型,通过组织学和功能分析评估了移植表达 CPTX 的 hiPSC-NS/PCs 的效果。我们的研究结果表明,移植部位兴奋性突触的形成明显增加。逆行单突触描记表明,CPTX 促进了移植神经元与周围神经元束的广泛整合。因此,运动和脊髓传导明显改善。因此,针对突触形成的体外基因疗法有望在未来应用于临床,并为脊髓损伤患者带来潜在的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-induced pluripotent stem cell-derived neural stem/progenitor cell ex vivo gene therapy with synaptic organizer CPTX for spinal cord injury.

The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
期刊最新文献
Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons. Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole. Accelerated mitochondrial dynamics promote spermatogonial differentiation. Validation of non-destructive morphology-based selection of cerebral cortical organoids by paired morphological and single-cell RNA-seq analyses. Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1