解密 Fc-效应器对抗 SARS-CoV-2 的功能

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Microbiology Pub Date : 2024-08-01 Epub Date: 2024-02-15 DOI:10.1016/j.tim.2024.01.005
Guillaume Beaudoin-Bussières, Andrés Finzi
{"title":"解密 Fc-效应器对抗 SARS-CoV-2 的功能","authors":"Guillaume Beaudoin-Bussières, Andrés Finzi","doi":"10.1016/j.tim.2024.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"756-768"},"PeriodicalIF":14.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering Fc-effector functions against SARS-CoV-2.\",\"authors\":\"Guillaume Beaudoin-Bussières, Andrés Finzi\",\"doi\":\"10.1016/j.tim.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":\" \",\"pages\":\"756-768\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2024.01.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.01.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究针对 SARS-CoV-2 的抗体反应是一项重要工作。在感染、疫苗接种和突破性感染方面,对中和 SARS-CoV-2 的抗体进行了广泛的研究。然而,抗体是一种多效蛋白,除了中和作用外,还具有多种功能。这些功能包括 Fc 效应器功能,如抗体依赖性细胞毒性(ADCC)和抗体依赖性细胞吞噬作用(ADCP)。虽然这些 Fc 效应功能对抗病毒感染很重要,但与结合和中和相比,对 SARS-CoV-2 的研究较少。部分原因是,与抗体结合和中和相比,很难开发出可靠的检测方法来测量 Fc-效应器功能。目前已开发出多种检测方法,可用于测量不同的 Fc-效应器功能。在此,我们回顾了这些检测方法以及目前已知的抗 SARS-CoV-2 Fc-效应器功能。总之,本综述总结并更新了我们目前对抗 SARS-CoV-2 Fc-效应器功能的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering Fc-effector functions against SARS-CoV-2.

Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
期刊最新文献
From advisors to mentors: fostering supportive mentorship in academia. Tea plant microorganisms in the improvement of tea quality. Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Neutrophils - an understudied bystander in dengue?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1