{"title":"多基因对缺陷型和非缺陷型精神分裂症大脑功能内表型的影响。","authors":"Jin Fang, Yiding Lv, Yingying Xie, Xiaowei Tang, Xiaobin Zhang, Xiang Wang, Miao Yu, Chao Zhou, Wen Qin, Xiangrong Zhang","doi":"10.1038/s41537-024-00432-w","DOIUrl":null,"url":null,"abstract":"<p><p>Deficit schizophrenia (DS) is a subtype of schizophrenia (SCZ). The polygenic effects on the neuroimaging alterations in DS still remain unknown. This study aims to calculate the polygenic risk scores for schizophrenia (PRS-SCZ) in DS, and further explores the potential associations with functional features of brain. PRS-SCZ was calculated according to the Whole Exome sequencing and Genome-wide association studies (GWAS). Resting-state fMRI, as well as biochemical features and neurocognitive data were obtained from 33 DS, 47 NDS and 41 HCs, and association studies of genetic risk with neuroimaging were performed in this sample. The analyses of amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and functional connectivity (FC) were performed to detect the functional alterations between DS and NDS. In addition, correlation analysis was used to investigate the relationships between functional features (ALFF, ReHo, FC) and PRS-SCZ. The PRS-SCZ of DS was significantly lower than that in NDS and HC. Compared to NDS, there was a significant increase in the ALFF of left inferior temporal gyrus (ITG.L) and left inferior frontal gyrus (IFG.L) and a significant decrease in the ALFF of right precuneus (PCUN.R) and ReHo of right middle frontal gyrus (MFG.R) in DS. FCs were widely changed between DS and NDS, mainly concentrated in default mode network, including ITG, PCUN and angular gyrus (ANG). Correlation analysis revealed that the ALFF of left ITG, the ReHo of right middle frontal gyrus, the FC value between insula and ANG, left ITG and right corpus callosum, left ITG and right PCUN, as well as the scores of Trail Making Test-B, were associated with PRS-SCZ in DS. The present study demonstrated the differential polygenic effects on functional changes of brain in DS and NDS, providing a potential neuroimaging-genetic perspective for the pathogenesis of schizophrenia.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polygenic effects on brain functional endophenotype for deficit and non-deficit schizophrenia.\",\"authors\":\"Jin Fang, Yiding Lv, Yingying Xie, Xiaowei Tang, Xiaobin Zhang, Xiang Wang, Miao Yu, Chao Zhou, Wen Qin, Xiangrong Zhang\",\"doi\":\"10.1038/s41537-024-00432-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deficit schizophrenia (DS) is a subtype of schizophrenia (SCZ). The polygenic effects on the neuroimaging alterations in DS still remain unknown. This study aims to calculate the polygenic risk scores for schizophrenia (PRS-SCZ) in DS, and further explores the potential associations with functional features of brain. PRS-SCZ was calculated according to the Whole Exome sequencing and Genome-wide association studies (GWAS). Resting-state fMRI, as well as biochemical features and neurocognitive data were obtained from 33 DS, 47 NDS and 41 HCs, and association studies of genetic risk with neuroimaging were performed in this sample. The analyses of amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and functional connectivity (FC) were performed to detect the functional alterations between DS and NDS. In addition, correlation analysis was used to investigate the relationships between functional features (ALFF, ReHo, FC) and PRS-SCZ. The PRS-SCZ of DS was significantly lower than that in NDS and HC. Compared to NDS, there was a significant increase in the ALFF of left inferior temporal gyrus (ITG.L) and left inferior frontal gyrus (IFG.L) and a significant decrease in the ALFF of right precuneus (PCUN.R) and ReHo of right middle frontal gyrus (MFG.R) in DS. FCs were widely changed between DS and NDS, mainly concentrated in default mode network, including ITG, PCUN and angular gyrus (ANG). Correlation analysis revealed that the ALFF of left ITG, the ReHo of right middle frontal gyrus, the FC value between insula and ANG, left ITG and right corpus callosum, left ITG and right PCUN, as well as the scores of Trail Making Test-B, were associated with PRS-SCZ in DS. The present study demonstrated the differential polygenic effects on functional changes of brain in DS and NDS, providing a potential neuroimaging-genetic perspective for the pathogenesis of schizophrenia.</p>\",\"PeriodicalId\":74758,\"journal\":{\"name\":\"Schizophrenia (Heidelberg, Germany)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-024-00432-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-024-00432-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
摘要
缺陷型精神分裂症(DS)是精神分裂症(SCZ)的一种亚型。多基因对缺陷型精神分裂症神经影像学改变的影响仍然未知。本研究旨在计算缺陷型精神分裂症的多基因风险评分(PRS-SCZ),并进一步探讨其与大脑功能特征的潜在关联。PRS-SCZ是根据全外显子组测序和全基因组关联研究(GWAS)计算得出的。研究获得了 33 名 DS、47 名 NDS 和 41 名 HC 的静息态 fMRI 以及生化特征和神经认知数据,并在这些样本中进行了遗传风险与神经影像学的关联研究。研究人员对低频波动幅度(ALFF)、区域同质性(ReHo)和功能连接性(FC)进行了分析,以检测DS和NDS之间的功能改变。此外,研究人员还使用相关性分析来探讨功能特征(ALFF、ReHo和FC)与PRS-SCZ之间的关系。DS的PRS-SCZ明显低于NDS和HC。与NDS相比,DS左侧颞下回(ITG.L)和左侧额下回(IFG.L)的ALFF显著增加,右侧楔前回(PCUN.R)的ALFF和右侧额中回(MFG.R)的ReHo显著减少。FCs在DS和NDS之间发生了广泛变化,主要集中在默认模式网络,包括ITG、PCUN和角回(ANG)。相关分析表明,左侧ITG的ALFF、右侧额中回的ReHo、脑岛与ANG、左侧ITG与右侧胼胝体、左侧ITG与右侧PCUN的FC值以及Trail Making Test-B的得分均与DS的PRS-SCZ相关。本研究证明了多基因对 DS 和 NDS 脑功能变化的不同影响,为精神分裂症的发病机制提供了一个潜在的神经影像遗传学视角。
Polygenic effects on brain functional endophenotype for deficit and non-deficit schizophrenia.
Deficit schizophrenia (DS) is a subtype of schizophrenia (SCZ). The polygenic effects on the neuroimaging alterations in DS still remain unknown. This study aims to calculate the polygenic risk scores for schizophrenia (PRS-SCZ) in DS, and further explores the potential associations with functional features of brain. PRS-SCZ was calculated according to the Whole Exome sequencing and Genome-wide association studies (GWAS). Resting-state fMRI, as well as biochemical features and neurocognitive data were obtained from 33 DS, 47 NDS and 41 HCs, and association studies of genetic risk with neuroimaging were performed in this sample. The analyses of amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and functional connectivity (FC) were performed to detect the functional alterations between DS and NDS. In addition, correlation analysis was used to investigate the relationships between functional features (ALFF, ReHo, FC) and PRS-SCZ. The PRS-SCZ of DS was significantly lower than that in NDS and HC. Compared to NDS, there was a significant increase in the ALFF of left inferior temporal gyrus (ITG.L) and left inferior frontal gyrus (IFG.L) and a significant decrease in the ALFF of right precuneus (PCUN.R) and ReHo of right middle frontal gyrus (MFG.R) in DS. FCs were widely changed between DS and NDS, mainly concentrated in default mode network, including ITG, PCUN and angular gyrus (ANG). Correlation analysis revealed that the ALFF of left ITG, the ReHo of right middle frontal gyrus, the FC value between insula and ANG, left ITG and right corpus callosum, left ITG and right PCUN, as well as the scores of Trail Making Test-B, were associated with PRS-SCZ in DS. The present study demonstrated the differential polygenic effects on functional changes of brain in DS and NDS, providing a potential neuroimaging-genetic perspective for the pathogenesis of schizophrenia.