Suriyakumar Dasarathan , Junghwan Sung , Mukarram Ali , You-Jin Lee , Hae-Young Choi , Jun-Woo Park , Doohun Kim
{"title":"磷改性 TiN 介孔 MXene 中间膜作为多硫化物电催化剂对锂-S 电池的影响","authors":"Suriyakumar Dasarathan , Junghwan Sung , Mukarram Ali , You-Jin Lee , Hae-Young Choi , Jun-Woo Park , Doohun Kim","doi":"10.1016/j.elecom.2024.107679","DOIUrl":null,"url":null,"abstract":"<div><p>The research on lithium-sulfur batteries (LSBs) addresses the challenges of sulfur's insulating properties and the 'shuttle effect' of lithium polysulfides (LiPSs) hindering their commercialization. The introduction of a phosphorous-modified mesoporous Titanium Nitride (TiN) interlayer for the S@MWCNTs cathode demonstrates significant advancements in enhancing conductivity and enabling greater sulfur loading. This modification minimizes the LiPS's 'shuttle effect' through robust chemical bonds with phosphorous loading, leading to superior electrochemical performance. Electrochemical analyses reveal that the phosphorous-modified TiN offers a greater number of active sites for catalyzing redox reactions of the sulfur cathode. The phosphorous-modified mesoporous titanium nitride (P-TiN) interlayer exhibits impressive electrochemical performance, delivering a capacity of 358 mAh g<sup>−1</sup> after 320 cycles at 0.1 C and demonstrating high-rate performance of 380 mAh g<sup>−1</sup> at 1 C.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"160 ","pages":"Article 107679"},"PeriodicalIF":4.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000225/pdfft?md5=58f9960326974cbabf23489afdd31ba1&pid=1-s2.0-S1388248124000225-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of phosphorus-modified TiN mesoporous MXene interlayer as a polysulfide electrocatalyst in Li-S battery\",\"authors\":\"Suriyakumar Dasarathan , Junghwan Sung , Mukarram Ali , You-Jin Lee , Hae-Young Choi , Jun-Woo Park , Doohun Kim\",\"doi\":\"10.1016/j.elecom.2024.107679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research on lithium-sulfur batteries (LSBs) addresses the challenges of sulfur's insulating properties and the 'shuttle effect' of lithium polysulfides (LiPSs) hindering their commercialization. The introduction of a phosphorous-modified mesoporous Titanium Nitride (TiN) interlayer for the S@MWCNTs cathode demonstrates significant advancements in enhancing conductivity and enabling greater sulfur loading. This modification minimizes the LiPS's 'shuttle effect' through robust chemical bonds with phosphorous loading, leading to superior electrochemical performance. Electrochemical analyses reveal that the phosphorous-modified TiN offers a greater number of active sites for catalyzing redox reactions of the sulfur cathode. The phosphorous-modified mesoporous titanium nitride (P-TiN) interlayer exhibits impressive electrochemical performance, delivering a capacity of 358 mAh g<sup>−1</sup> after 320 cycles at 0.1 C and demonstrating high-rate performance of 380 mAh g<sup>−1</sup> at 1 C.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"160 \",\"pages\":\"Article 107679\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000225/pdfft?md5=58f9960326974cbabf23489afdd31ba1&pid=1-s2.0-S1388248124000225-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000225\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000225","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
锂硫电池(LSBs)的研究解决了硫的绝缘性能和多硫化锂(LiPSs)的 "穿梭效应 "阻碍其商业化的难题。在 S@MWCNTs 负极中引入磷改性介孔氮化钛(TiN)中间层,在提高导电性和增加硫负荷方面取得了重大进展。这种改性通过与磷负载的牢固化学键,最大限度地减少了锂离子电池的 "穿梭效应",从而实现了卓越的电化学性能。电化学分析表明,磷改性 TiN 提供了更多的活性位点,可催化硫阴极的氧化还原反应。磷改性介孔氮化钛(P-TiN)中间膜表现出令人印象深刻的电化学性能,在 0.1 摄氏度条件下循环 320 次后,容量达到 358 mAh g-1,在 1 摄氏度条件下表现出 380 mAh g-1 的高速率性能。
Effect of phosphorus-modified TiN mesoporous MXene interlayer as a polysulfide electrocatalyst in Li-S battery
The research on lithium-sulfur batteries (LSBs) addresses the challenges of sulfur's insulating properties and the 'shuttle effect' of lithium polysulfides (LiPSs) hindering their commercialization. The introduction of a phosphorous-modified mesoporous Titanium Nitride (TiN) interlayer for the S@MWCNTs cathode demonstrates significant advancements in enhancing conductivity and enabling greater sulfur loading. This modification minimizes the LiPS's 'shuttle effect' through robust chemical bonds with phosphorous loading, leading to superior electrochemical performance. Electrochemical analyses reveal that the phosphorous-modified TiN offers a greater number of active sites for catalyzing redox reactions of the sulfur cathode. The phosphorous-modified mesoporous titanium nitride (P-TiN) interlayer exhibits impressive electrochemical performance, delivering a capacity of 358 mAh g−1 after 320 cycles at 0.1 C and demonstrating high-rate performance of 380 mAh g−1 at 1 C.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.