Yi Yang, Jie Zhang, Xingchun Wang, Mingxing Liang, Dewei Li, Meng Liang, Yang Ou, Dingyu Jia, Xianchun Tang, Xufeng Li
{"title":"三维磁层探测揭示共和盆地深部结构和地热资源效应","authors":"Yi Yang, Jie Zhang, Xingchun Wang, Mingxing Liang, Dewei Li, Meng Liang, Yang Ou, Dingyu Jia, Xianchun Tang, Xufeng Li","doi":"10.1186/s40517-024-00281-x","DOIUrl":null,"url":null,"abstract":"<div><p>In order to better understand the crustal shortening and orogenic uplift in the northeastern margin of the Tibetan Plateau, as well as the geothermal resource effects formed during this process, we used ModEM software to perform 3D MT imaging on broadband magnetotelluric survey points deployed at 710 points in the Gonghe Basin and its surrounding areas. The resistivity model suggests that the Gonghe Basin exhibits a low–high–low overall electrical structure, with high conductivity widely distributed in the middle and lower crust. The resistivity model also reveals a significant discontinuity between high and low resistivity blocks at various depths in the upper and middle crust. These discontinuities are align with the faults observed on the surface related to strong crustal fluctuations, which are connected to high conductors in the middle and upper crust. Using empirical formulas for high-temperature and high-pressure testing of granite, it is estimated that the melting volume of these high conductors ranges from 3 to 43%, demonstrating good \"plasticity\". These high conductors can act as detachment layers for crustal shortening and deformation during the expansion of the Tibetan Plateau towards the northeast edge and can continuously conduct heat energy upwards, creating a high thermal background in the Gonghe Basin.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00281-x","citationCount":"0","resultStr":"{\"title\":\"Deep structure and geothermal resource effects of the Gonghe basin revealed by 3D magnetotelluric\",\"authors\":\"Yi Yang, Jie Zhang, Xingchun Wang, Mingxing Liang, Dewei Li, Meng Liang, Yang Ou, Dingyu Jia, Xianchun Tang, Xufeng Li\",\"doi\":\"10.1186/s40517-024-00281-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to better understand the crustal shortening and orogenic uplift in the northeastern margin of the Tibetan Plateau, as well as the geothermal resource effects formed during this process, we used ModEM software to perform 3D MT imaging on broadband magnetotelluric survey points deployed at 710 points in the Gonghe Basin and its surrounding areas. The resistivity model suggests that the Gonghe Basin exhibits a low–high–low overall electrical structure, with high conductivity widely distributed in the middle and lower crust. The resistivity model also reveals a significant discontinuity between high and low resistivity blocks at various depths in the upper and middle crust. These discontinuities are align with the faults observed on the surface related to strong crustal fluctuations, which are connected to high conductors in the middle and upper crust. Using empirical formulas for high-temperature and high-pressure testing of granite, it is estimated that the melting volume of these high conductors ranges from 3 to 43%, demonstrating good \\\"plasticity\\\". These high conductors can act as detachment layers for crustal shortening and deformation during the expansion of the Tibetan Plateau towards the northeast edge and can continuously conduct heat energy upwards, creating a high thermal background in the Gonghe Basin.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00281-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-024-00281-x\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00281-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deep structure and geothermal resource effects of the Gonghe basin revealed by 3D magnetotelluric
In order to better understand the crustal shortening and orogenic uplift in the northeastern margin of the Tibetan Plateau, as well as the geothermal resource effects formed during this process, we used ModEM software to perform 3D MT imaging on broadband magnetotelluric survey points deployed at 710 points in the Gonghe Basin and its surrounding areas. The resistivity model suggests that the Gonghe Basin exhibits a low–high–low overall electrical structure, with high conductivity widely distributed in the middle and lower crust. The resistivity model also reveals a significant discontinuity between high and low resistivity blocks at various depths in the upper and middle crust. These discontinuities are align with the faults observed on the surface related to strong crustal fluctuations, which are connected to high conductors in the middle and upper crust. Using empirical formulas for high-temperature and high-pressure testing of granite, it is estimated that the melting volume of these high conductors ranges from 3 to 43%, demonstrating good "plasticity". These high conductors can act as detachment layers for crustal shortening and deformation during the expansion of the Tibetan Plateau towards the northeast edge and can continuously conduct heat energy upwards, creating a high thermal background in the Gonghe Basin.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.