塞流式生物反应器水解过程的空间监测:为灵活操作提供支持?

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioresources and Bioprocessing Pub Date : 2024-02-14 DOI:10.1186/s40643-024-00740-0
Theresa Menzel, Peter Neubauer, Stefan Junne
{"title":"塞流式生物反应器水解过程的空间监测:为灵活操作提供支持?","authors":"Theresa Menzel, Peter Neubauer, Stefan Junne","doi":"10.1186/s40643-024-00740-0","DOIUrl":null,"url":null,"abstract":"<p>Hydrolysis at changing hydraulic retention time, recirculation, bedding straw content in the feed, bioaugmentation and the impact of those changes on gradient formation in the liquid phase in plug-flow reactors (PFRs) was examined. The pH-value, conductivity and oxidation–reduction potential (ORP) were monitored at three spots along the PFRs to study potential correlations to process performance during a total process time of 123 weeks. The <i>on-line</i> monitoring showed good correlations to acidogenesis: namely, the pH and ORP to the acidification, to butyric (and lactic) acid concentration and to the acid yield. The ORP (measured at the inlet) showed the most stable correlation to acidogenesis under dynamic operation, while the conductivity (at the outlet) correlated to the acid concentration in dependence on the feedstock. Multiple measurement spots as used in this study allow to gain more information about acidogenic fermentation than a single spot, simplifying process control and automation attempts with recalcitrant feedstock.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"98 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial monitoring of hydrolysis in a plug-flow bioreactor: a support for flexible operation?\",\"authors\":\"Theresa Menzel, Peter Neubauer, Stefan Junne\",\"doi\":\"10.1186/s40643-024-00740-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrolysis at changing hydraulic retention time, recirculation, bedding straw content in the feed, bioaugmentation and the impact of those changes on gradient formation in the liquid phase in plug-flow reactors (PFRs) was examined. The pH-value, conductivity and oxidation–reduction potential (ORP) were monitored at three spots along the PFRs to study potential correlations to process performance during a total process time of 123 weeks. The <i>on-line</i> monitoring showed good correlations to acidogenesis: namely, the pH and ORP to the acidification, to butyric (and lactic) acid concentration and to the acid yield. The ORP (measured at the inlet) showed the most stable correlation to acidogenesis under dynamic operation, while the conductivity (at the outlet) correlated to the acid concentration in dependence on the feedstock. Multiple measurement spots as used in this study allow to gain more information about acidogenic fermentation than a single spot, simplifying process control and automation attempts with recalcitrant feedstock.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-024-00740-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00740-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了在改变水力停留时间、再循环、进料中垫料秸秆含量、生物增量时的水解情况,以及这些变化对塞流反应器(PFR)中液相梯度形成的影响。在总工艺时间为 123 周的过程中,对 PFR 沿线三个点的 pH 值、电导率和氧化还原电位 (ORP) 进行了监测,以研究与工艺性能之间的潜在关联。在线监测结果表明,pH 值和 ORP 与酸化、丁酸(和乳酸)浓度以及产酸量密切相关。在动态操作下,ORP(在入口处测量)与酸生成的相关性最为稳定,而电导率(在出口处测量)与酸浓度的相关性则取决于原料。与单个测量点相比,本研究中使用的多个测量点可获得更多有关产酸发酵的信息,从而简化过程控制,并在使用难处理的原料时实现自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial monitoring of hydrolysis in a plug-flow bioreactor: a support for flexible operation?

Hydrolysis at changing hydraulic retention time, recirculation, bedding straw content in the feed, bioaugmentation and the impact of those changes on gradient formation in the liquid phase in plug-flow reactors (PFRs) was examined. The pH-value, conductivity and oxidation–reduction potential (ORP) were monitored at three spots along the PFRs to study potential correlations to process performance during a total process time of 123 weeks. The on-line monitoring showed good correlations to acidogenesis: namely, the pH and ORP to the acidification, to butyric (and lactic) acid concentration and to the acid yield. The ORP (measured at the inlet) showed the most stable correlation to acidogenesis under dynamic operation, while the conductivity (at the outlet) correlated to the acid concentration in dependence on the feedstock. Multiple measurement spots as used in this study allow to gain more information about acidogenic fermentation than a single spot, simplifying process control and automation attempts with recalcitrant feedstock.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
期刊最新文献
Stress-induced premature senescence in high five cell cultures: a principal factor in cell-density effects. Precise regulating the specific oxygen consumption rate to strengthen the CoQ10 biosynthesis by Rhodobater sphaeroides. Transcriptomics-guided optimization of vitamins to enhance erythromycin yield in saccharopolyspora erythraea. Evaluation of cosmetic efficacy of lychee seed fermentation liquid. Computational-guided discovery of UDP-glycosyltransferases for lauryl glucoside production using engineered E. coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1