{"title":"多弧等离子喷涂中固体护罩的数值和实验分析","authors":"K. Bobzin, H. Heinemann, A. Dokhanchi","doi":"10.1007/s11666-024-01715-5","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma spraying is characterized by high flexibility, but has challenges of high energy consumption and oxidation of the metallic spray particles. Modified plasma spraying processes using a gas or solid shroud have been developed to address these challenges, which aim to reduce the introduction of ambient air into the plasma jet and improve the process efficiency. Prior research mainly focused on single-cathode plasma generators, and the use of a shroud in multi-arc plasma spraying systems has not been thoroughly explored. The primary goal of this study is to analyze the effects of a solid shroud as a nozzle extension on the plasma jet of a three-cathode plasma generator numerically and experimentally. Computational fluid dynamics (CFD) is used to simulate a solid shroud, and the resulting design is constructed for experimental analysis. The experimental setup includes a nozzle extension with a transparent window for diagnostic measurements by a high-speed camera. To isolate the effects of the solid shroud from fluctuations in the power input, current, and voltage measurements are carried out synchronized with the high-speed recordings. Particle diagnostics are also conducted to analyze the properties of the in-flight particles without and with the solid shroud. The developed numerical model can be further used to optimize the shroud geometry for different process parameters.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 4","pages":"1191 - 1204"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01715-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical and Experimental Analysis of a Solid Shroud in Multi-arc Plasma Spraying\",\"authors\":\"K. Bobzin, H. Heinemann, A. Dokhanchi\",\"doi\":\"10.1007/s11666-024-01715-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma spraying is characterized by high flexibility, but has challenges of high energy consumption and oxidation of the metallic spray particles. Modified plasma spraying processes using a gas or solid shroud have been developed to address these challenges, which aim to reduce the introduction of ambient air into the plasma jet and improve the process efficiency. Prior research mainly focused on single-cathode plasma generators, and the use of a shroud in multi-arc plasma spraying systems has not been thoroughly explored. The primary goal of this study is to analyze the effects of a solid shroud as a nozzle extension on the plasma jet of a three-cathode plasma generator numerically and experimentally. Computational fluid dynamics (CFD) is used to simulate a solid shroud, and the resulting design is constructed for experimental analysis. The experimental setup includes a nozzle extension with a transparent window for diagnostic measurements by a high-speed camera. To isolate the effects of the solid shroud from fluctuations in the power input, current, and voltage measurements are carried out synchronized with the high-speed recordings. Particle diagnostics are also conducted to analyze the properties of the in-flight particles without and with the solid shroud. The developed numerical model can be further used to optimize the shroud geometry for different process parameters.</p></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"33 4\",\"pages\":\"1191 - 1204\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11666-024-01715-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-024-01715-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01715-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Numerical and Experimental Analysis of a Solid Shroud in Multi-arc Plasma Spraying
Plasma spraying is characterized by high flexibility, but has challenges of high energy consumption and oxidation of the metallic spray particles. Modified plasma spraying processes using a gas or solid shroud have been developed to address these challenges, which aim to reduce the introduction of ambient air into the plasma jet and improve the process efficiency. Prior research mainly focused on single-cathode plasma generators, and the use of a shroud in multi-arc plasma spraying systems has not been thoroughly explored. The primary goal of this study is to analyze the effects of a solid shroud as a nozzle extension on the plasma jet of a three-cathode plasma generator numerically and experimentally. Computational fluid dynamics (CFD) is used to simulate a solid shroud, and the resulting design is constructed for experimental analysis. The experimental setup includes a nozzle extension with a transparent window for diagnostic measurements by a high-speed camera. To isolate the effects of the solid shroud from fluctuations in the power input, current, and voltage measurements are carried out synchronized with the high-speed recordings. Particle diagnostics are also conducted to analyze the properties of the in-flight particles without and with the solid shroud. The developed numerical model can be further used to optimize the shroud geometry for different process parameters.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.