{"title":"华北克拉通河北东部新元古代晚期变质玄武岩的深厚地幔源:全岩地球化学和 Sm-Nd 同位素以及锆石 U-Pb-Hf 同位素的启示","authors":"","doi":"10.1007/s12583-023-1807-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth’s evolution. To provide important insights into the issues, we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes, and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei, North China Craton. U-Pb isotopic dating using the LA-ICP-MS on zircons reveals that the basalts in eastern Hebei erupted at <em>ca.</em> 2.48–2.51 Ga and subsequently experienced multiple regional metamorphic events at 2 477 and 1 798 Ma, respectively. The metamorphosed basalts are featured by low SiO<sub>2</sub>, MgO, K<sub>2</sub>O + Na<sub>2</sub>O, and high FeO contents, endowed with the subalkaline and high-Fe tholeiitic affinities. The radiogenic initial Nd and Hf isotope values and correlations among V, Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution. They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents, indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Mantle Source for the Late Neoarchean Metamorphosed Basalts in Eastern Hebei, North China Craton: Insights from Whole-Rock Geochemistry and Sm-Nd Isotopes, and Zircon U-Pb-Hf Isotopes\",\"authors\":\"\",\"doi\":\"10.1007/s12583-023-1807-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth’s evolution. To provide important insights into the issues, we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes, and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei, North China Craton. U-Pb isotopic dating using the LA-ICP-MS on zircons reveals that the basalts in eastern Hebei erupted at <em>ca.</em> 2.48–2.51 Ga and subsequently experienced multiple regional metamorphic events at 2 477 and 1 798 Ma, respectively. The metamorphosed basalts are featured by low SiO<sub>2</sub>, MgO, K<sub>2</sub>O + Na<sub>2</sub>O, and high FeO contents, endowed with the subalkaline and high-Fe tholeiitic affinities. The radiogenic initial Nd and Hf isotope values and correlations among V, Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution. They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents, indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-023-1807-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-023-1807-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A Deep Mantle Source for the Late Neoarchean Metamorphosed Basalts in Eastern Hebei, North China Craton: Insights from Whole-Rock Geochemistry and Sm-Nd Isotopes, and Zircon U-Pb-Hf Isotopes
Abstract
The basalts within the greenstone belt worldwide serve as an ideal target to decipher the nature of Archean mantle sources and further to extend the understanding of the early stages of Earth’s evolution. To provide important insights into the issues, we carried out a detailed investigation of whole-rock geochemistry and Sm-Nd isotopes, and zircon U-Pb-Hf isotopes for the Late Neoarchean metamorphosed basalts in eastern Hebei, North China Craton. U-Pb isotopic dating using the LA-ICP-MS on zircons reveals that the basalts in eastern Hebei erupted at ca. 2.48–2.51 Ga and subsequently experienced multiple regional metamorphic events at 2 477 and 1 798 Ma, respectively. The metamorphosed basalts are featured by low SiO2, MgO, K2O + Na2O, and high FeO contents, endowed with the subalkaline and high-Fe tholeiitic affinities. The radiogenic initial Nd and Hf isotope values and correlations among V, Ni and Cr contents strongly imply that the basalts experienced significant clinopyroxene and olivine fractionation and minor crustal contamination during magma evolution. They are also characterized by the relatively low total REE contents and exhibit significant depletions to moderate enrichments in the LREE contents, indicating the derivation from a deep mantle source in an Archean proto-mantle plume setting.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.