Hashan Peiris, Himchan Jeong, Jae-Kwang Kim, Hangsuck Lee
{"title":"整合传统数据和远程信息处理技术数据,实现高效的保险理赔预测","authors":"Hashan Peiris, Himchan Jeong, Jae-Kwang Kim, Hangsuck Lee","doi":"10.1017/asb.2024.6","DOIUrl":null,"url":null,"abstract":"While driver telematics has gained attention for risk classification in auto insurance, scarcity of observations with telematics features has been problematic, which could be owing to either privacy concerns or favorable selection compared to the data points with traditional features. To handle this issue, we apply a data integration technique based on calibration weights for usage-based insurance with multiple sources of data. It is shown that the proposed framework can efficiently integrate traditional data and telematics data and can also deal with possible favorable selection issues related to telematics data availability. Our findings are supported by a simulation study and empirical analysis in a synthetic telematics dataset.","PeriodicalId":501189,"journal":{"name":"ASTIN Bulletin: The Journal of the IAA","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of traditional and telematics data for efficient insurance claims prediction\",\"authors\":\"Hashan Peiris, Himchan Jeong, Jae-Kwang Kim, Hangsuck Lee\",\"doi\":\"10.1017/asb.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While driver telematics has gained attention for risk classification in auto insurance, scarcity of observations with telematics features has been problematic, which could be owing to either privacy concerns or favorable selection compared to the data points with traditional features. To handle this issue, we apply a data integration technique based on calibration weights for usage-based insurance with multiple sources of data. It is shown that the proposed framework can efficiently integrate traditional data and telematics data and can also deal with possible favorable selection issues related to telematics data availability. Our findings are supported by a simulation study and empirical analysis in a synthetic telematics dataset.\",\"PeriodicalId\":501189,\"journal\":{\"name\":\"ASTIN Bulletin: The Journal of the IAA\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin: The Journal of the IAA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2024.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin: The Journal of the IAA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2024.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of traditional and telematics data for efficient insurance claims prediction
While driver telematics has gained attention for risk classification in auto insurance, scarcity of observations with telematics features has been problematic, which could be owing to either privacy concerns or favorable selection compared to the data points with traditional features. To handle this issue, we apply a data integration technique based on calibration weights for usage-based insurance with multiple sources of data. It is shown that the proposed framework can efficiently integrate traditional data and telematics data and can also deal with possible favorable selection issues related to telematics data availability. Our findings are supported by a simulation study and empirical analysis in a synthetic telematics dataset.