经区域调整的随机地震地动模型、相关变异性和认识不确定性

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Seismology Pub Date : 2024-02-08 DOI:10.1007/s10950-024-10195-7
Jaleena Sunny, Marco de Angelis, Benjamin Edwards
{"title":"经区域调整的随机地震地动模型、相关变异性和认识不确定性","authors":"Jaleena Sunny,&nbsp;Marco de Angelis,&nbsp;Benjamin Edwards","doi":"10.1007/s10950-024-10195-7","DOIUrl":null,"url":null,"abstract":"<div><p>An optimisation-based calibration technique, using the area metric, is applied to determine the input parameters of a stochastic earthquake-waveform simulation method. The calibration algorithm updates a model prior, specifically an estimate of a region’s seismological (source, path and site) parameters, typically developed using waveform data, or existing models, from a wide range of sources. In the absence of calibration, this can result in overestimates of a target region’s ground motion variability, and in some cases, introduce biases. The proposed method simultaneously attains optimum estimates of median, range and distribution (uncertainty) of these seismological parameters, and resultant ground motions, for a specific target region, through calibration of physically constrained parametric models to local ground motion data. We apply the method to Italy, a region of moderate seismicity, using response spectra recorded in the European Strong Motion (ESM) dataset. As a prior, we utilise independent seismological models developed using strong motion data across a wider European context. The calibration obtains values of each seismological parameter considered (such as, but not limited to, quality factor, geometrical spreading and stress drop), to develop a suite of optimal parameters for locally adjusted stochastic ground motion simulation. We consider both the epistemic and aleatory variability associated with the calibration process. We were able to reduce the area metric (misfit) value by up to 88% for the simulations using updated parameters, compared to the initial prior. This framework for the calibration and updating of seismological models can help achieve robust and transparent regionally adjusted estimates of ground motion, and to consider epistemic uncertainty through correlated parameters.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-024-10195-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Regionally adjusted stochastic earthquake ground motion models, associated variabilities and epistemic uncertainties\",\"authors\":\"Jaleena Sunny,&nbsp;Marco de Angelis,&nbsp;Benjamin Edwards\",\"doi\":\"10.1007/s10950-024-10195-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An optimisation-based calibration technique, using the area metric, is applied to determine the input parameters of a stochastic earthquake-waveform simulation method. The calibration algorithm updates a model prior, specifically an estimate of a region’s seismological (source, path and site) parameters, typically developed using waveform data, or existing models, from a wide range of sources. In the absence of calibration, this can result in overestimates of a target region’s ground motion variability, and in some cases, introduce biases. The proposed method simultaneously attains optimum estimates of median, range and distribution (uncertainty) of these seismological parameters, and resultant ground motions, for a specific target region, through calibration of physically constrained parametric models to local ground motion data. We apply the method to Italy, a region of moderate seismicity, using response spectra recorded in the European Strong Motion (ESM) dataset. As a prior, we utilise independent seismological models developed using strong motion data across a wider European context. The calibration obtains values of each seismological parameter considered (such as, but not limited to, quality factor, geometrical spreading and stress drop), to develop a suite of optimal parameters for locally adjusted stochastic ground motion simulation. We consider both the epistemic and aleatory variability associated with the calibration process. We were able to reduce the area metric (misfit) value by up to 88% for the simulations using updated parameters, compared to the initial prior. This framework for the calibration and updating of seismological models can help achieve robust and transparent regionally adjusted estimates of ground motion, and to consider epistemic uncertainty through correlated parameters.</p></div>\",\"PeriodicalId\":16994,\"journal\":{\"name\":\"Journal of Seismology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10950-024-10195-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Seismology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10950-024-10195-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10195-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 采用基于优化的校准技术,利用面积度量确定随机地震波形模拟方法的输入参数。校准算法更新了模型先验,特别是对区域地震学(震源、路径和地点)参数的估计,通常是利用波形数据或现有模型从各种来源开发的。在没有校准的情况下,这会导致对目标区域地动变化的高估,在某些情况下还会引入偏差。所提出的方法通过将物理约束参数模型与当地地动数据进行校准,可同时获得这些地震参数的中值、范围和分布(不确定性)的最佳估计值,以及特定目标区域的地动结果。我们利用欧洲强震(ESM)数据集记录的反应谱,将该方法应用于意大利这一中等地震频发地区。作为先验数据,我们利用在更广泛的欧洲范围内使用强震数据开发的独立地震学模型。校准可获得每个地震学参数(如但不限于质量因子、几何扩展和应力下降)的值,从而为局部调整的随机地动模拟开发出一套最佳参数。我们考虑了与校准过程相关的认识变异性和已知变异性。与初始先验值相比,我们能够将使用更新参数进行模拟的面积度量(不拟合)值减少高达 88%。这种校准和更新地震学模型的框架有助于实现稳健、透明的地动区域调整估计,并通过相关参数考虑认识上的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regionally adjusted stochastic earthquake ground motion models, associated variabilities and epistemic uncertainties

An optimisation-based calibration technique, using the area metric, is applied to determine the input parameters of a stochastic earthquake-waveform simulation method. The calibration algorithm updates a model prior, specifically an estimate of a region’s seismological (source, path and site) parameters, typically developed using waveform data, or existing models, from a wide range of sources. In the absence of calibration, this can result in overestimates of a target region’s ground motion variability, and in some cases, introduce biases. The proposed method simultaneously attains optimum estimates of median, range and distribution (uncertainty) of these seismological parameters, and resultant ground motions, for a specific target region, through calibration of physically constrained parametric models to local ground motion data. We apply the method to Italy, a region of moderate seismicity, using response spectra recorded in the European Strong Motion (ESM) dataset. As a prior, we utilise independent seismological models developed using strong motion data across a wider European context. The calibration obtains values of each seismological parameter considered (such as, but not limited to, quality factor, geometrical spreading and stress drop), to develop a suite of optimal parameters for locally adjusted stochastic ground motion simulation. We consider both the epistemic and aleatory variability associated with the calibration process. We were able to reduce the area metric (misfit) value by up to 88% for the simulations using updated parameters, compared to the initial prior. This framework for the calibration and updating of seismological models can help achieve robust and transparent regionally adjusted estimates of ground motion, and to consider epistemic uncertainty through correlated parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
期刊最新文献
Source parameters of the May 28, 2016, Mihoub earthquake (Mw 5.4, Algeria) deduced from Bayesian modelling of Sentinel-1 SAR data Fault imaging using earthquake sequences: a revised seismotectonic model for the Albstadt Shear Zone, Southwest Germany A logic-tree based probabilistic seismic hazard assessment for the central ionian islands of cephalonia and ithaca (Western Greece) Developing machine learning-based ground motion models to predict peak ground velocity in Turkiye Fault structures of the Haichenghe fault zone in Liaoning, China from high-precision location based on dense array observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1