随机跑道调度的新模拟方法

IF 4.4 2区 工程技术 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Transportation Science Pub Date : 2024-02-13 DOI:10.1287/trsc.2022.0400
Rob Shone, Kevin Glazebrook, Konstantinos G. Zografos
{"title":"随机跑道调度的新模拟方法","authors":"Rob Shone, Kevin Glazebrook, Konstantinos G. Zografos","doi":"10.1287/trsc.2022.0400","DOIUrl":null,"url":null,"abstract":"We consider a stochastic, dynamic runway scheduling problem involving aircraft landings on a single runway. Sequencing decisions are made with knowledge of the estimated arrival times (ETAs) of all aircraft due to arrive at the airport, and these ETAs vary according to continuous-time stochastic processes. Time separations between consecutive runway landings are modeled via sequence-dependent Erlang distributions and are affected by weather conditions, which also evolve continuously over time. The resulting multistage optimization problem is intractable using exact methods, and we propose a novel simheuristic approach based on the application of methods analogous to variable neighborhood search in a high-dimensional stochastic environment. Our model is calibrated using flight tracking data for over 98,000 arrivals at Heathrow Airport. Results from numerical experiments indicate that our proposed simheuristic algorithm outperforms an alternative based on deterministic forecasts under a wide range of parameter values, with the largest benefits seen when the underlying stochastic processes become more volatile and also when the on-time requirements of individual flights are given greater weight in the objective function.Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/M020258/1].Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/trsc.2022.0400 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Simheuristic Approach for Stochastic Runway Scheduling\",\"authors\":\"Rob Shone, Kevin Glazebrook, Konstantinos G. Zografos\",\"doi\":\"10.1287/trsc.2022.0400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stochastic, dynamic runway scheduling problem involving aircraft landings on a single runway. Sequencing decisions are made with knowledge of the estimated arrival times (ETAs) of all aircraft due to arrive at the airport, and these ETAs vary according to continuous-time stochastic processes. Time separations between consecutive runway landings are modeled via sequence-dependent Erlang distributions and are affected by weather conditions, which also evolve continuously over time. The resulting multistage optimization problem is intractable using exact methods, and we propose a novel simheuristic approach based on the application of methods analogous to variable neighborhood search in a high-dimensional stochastic environment. Our model is calibrated using flight tracking data for over 98,000 arrivals at Heathrow Airport. Results from numerical experiments indicate that our proposed simheuristic algorithm outperforms an alternative based on deterministic forecasts under a wide range of parameter values, with the largest benefits seen when the underlying stochastic processes become more volatile and also when the on-time requirements of individual flights are given greater weight in the objective function.Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/M020258/1].Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/trsc.2022.0400 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.0400\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0400","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一个随机动态跑道调度问题,涉及飞机在一条跑道上的降落。排序决策是在了解所有即将到达机场的飞机的预计到达时间(ETA)的基础上做出的,这些 ETA 根据连续时间随机过程变化。连续跑道着陆之间的时间间隔通过依赖于序列的厄朗分布建模,并受到天气条件的影响,而天气条件也会随时间不断变化。由此产生的多阶段优化问题使用精确方法难以解决,因此我们提出了一种新颖的模拟方法,其基础是在高维随机环境中应用类似于变量邻域搜索的方法。我们使用希思罗机场 98,000 多架次到达航班的航班跟踪数据对模型进行了校准。数值实验结果表明,我们提出的模拟算法在各种参数值下都优于基于确定性预测的替代算法,当基本随机过程变得更加不稳定,以及目标函数中单个航班的准点要求权重更大时,模拟算法的优势最大:本研究得到了工程与物理科学研究委员会[Grant EP/M020258/1]的支持:在线附录和数据文件见 https://doi.org/10.1287/trsc.2022.0400 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Simheuristic Approach for Stochastic Runway Scheduling
We consider a stochastic, dynamic runway scheduling problem involving aircraft landings on a single runway. Sequencing decisions are made with knowledge of the estimated arrival times (ETAs) of all aircraft due to arrive at the airport, and these ETAs vary according to continuous-time stochastic processes. Time separations between consecutive runway landings are modeled via sequence-dependent Erlang distributions and are affected by weather conditions, which also evolve continuously over time. The resulting multistage optimization problem is intractable using exact methods, and we propose a novel simheuristic approach based on the application of methods analogous to variable neighborhood search in a high-dimensional stochastic environment. Our model is calibrated using flight tracking data for over 98,000 arrivals at Heathrow Airport. Results from numerical experiments indicate that our proposed simheuristic algorithm outperforms an alternative based on deterministic forecasts under a wide range of parameter values, with the largest benefits seen when the underlying stochastic processes become more volatile and also when the on-time requirements of individual flights are given greater weight in the objective function.Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/M020258/1].Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/trsc.2022.0400 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Science
Transportation Science 工程技术-运筹学与管理科学
CiteScore
8.30
自引率
10.90%
发文量
111
审稿时长
12 months
期刊介绍: Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services. Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.
期刊最新文献
CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems On-Demand Meal Delivery: A Markov Model for Circulating Couriers Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models Heatmap Design for Probabilistic Driver Repositioning in Crowdsourced Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1