CodeKGC:生成式知识图谱构建的代码语言模型

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Asian and Low-Resource Language Information Processing Pub Date : 2024-02-09 DOI:10.1145/3641850
Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo, Huajun Chen, Ningyu Zhang
{"title":"CodeKGC:生成式知识图谱构建的代码语言模型","authors":"Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo, Huajun Chen, Ningyu Zhang","doi":"10.1145/3641850","DOIUrl":null,"url":null,"abstract":"<p>Current generative knowledge graph construction approaches usually fail to capture structural knowledge by simply flattening natural language into serialized texts or a specification language. However, large generative language model trained on structured data such as code has demonstrated impressive capability in understanding natural language for structural prediction and reasoning tasks. Intuitively, we address the task of generative knowledge graph construction with code language model: given a code-format natural language input, the target is to generate triples which can be represented as code completion tasks. Specifically, we develop schema-aware prompts that effectively utilize the semantic structure within the knowledge graph. As code inherently possesses structure, such as class and function definitions, it serves as a useful model for prior semantic structural knowledge. Furthermore, we employ a rationale-enhanced generation method to boost the performance. Rationales provide intermediate steps, thereby improving knowledge extraction abilities. Experimental results indicate that the proposed approach can obtain better performance on benchmark datasets compared with baselines.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CodeKGC: Code Language Model for Generative Knowledge Graph Construction\",\"authors\":\"Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo, Huajun Chen, Ningyu Zhang\",\"doi\":\"10.1145/3641850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current generative knowledge graph construction approaches usually fail to capture structural knowledge by simply flattening natural language into serialized texts or a specification language. However, large generative language model trained on structured data such as code has demonstrated impressive capability in understanding natural language for structural prediction and reasoning tasks. Intuitively, we address the task of generative knowledge graph construction with code language model: given a code-format natural language input, the target is to generate triples which can be represented as code completion tasks. Specifically, we develop schema-aware prompts that effectively utilize the semantic structure within the knowledge graph. As code inherently possesses structure, such as class and function definitions, it serves as a useful model for prior semantic structural knowledge. Furthermore, we employ a rationale-enhanced generation method to boost the performance. Rationales provide intermediate steps, thereby improving knowledge extraction abilities. Experimental results indicate that the proposed approach can obtain better performance on benchmark datasets compared with baselines.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3641850\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641850","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

当前的生成式知识图谱构建方法通常只是将自然语言扁平化为序列化文本或规范语言,从而无法捕捉结构性知识。然而,在代码等结构化数据上训练的大型生成语言模型在理解自然语言以完成结构预测和推理任务方面表现出了令人印象深刻的能力。直观地说,我们利用代码语言模型来完成生成知识图谱的构建任务:给定代码格式的自然语言输入,目标是生成可表示为代码完成任务的三元组。具体来说,我们开发了可有效利用知识图谱内语义结构的模式感知提示。由于代码本身具有结构(如类和函数定义),因此它可以作为先验语义结构知识的有用模型。此外,我们还采用了增强理由生成方法来提高性能。理由提供了中间步骤,从而提高了知识提取能力。实验结果表明,与基线方法相比,所提出的方法在基准数据集上可以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CodeKGC: Code Language Model for Generative Knowledge Graph Construction

Current generative knowledge graph construction approaches usually fail to capture structural knowledge by simply flattening natural language into serialized texts or a specification language. However, large generative language model trained on structured data such as code has demonstrated impressive capability in understanding natural language for structural prediction and reasoning tasks. Intuitively, we address the task of generative knowledge graph construction with code language model: given a code-format natural language input, the target is to generate triples which can be represented as code completion tasks. Specifically, we develop schema-aware prompts that effectively utilize the semantic structure within the knowledge graph. As code inherently possesses structure, such as class and function definitions, it serves as a useful model for prior semantic structural knowledge. Furthermore, we employ a rationale-enhanced generation method to boost the performance. Rationales provide intermediate steps, thereby improving knowledge extraction abilities. Experimental results indicate that the proposed approach can obtain better performance on benchmark datasets compared with baselines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
期刊最新文献
Learning and Vision-based approach for Human fall detection and classification in naturally occurring scenes using video data A DENSE SPATIAL NETWORK MODEL FOR EMOTION RECOGNITION USING LEARNING APPROACHES CNN-Based Models for Emotion and Sentiment Analysis Using Speech Data TRGCN: A Prediction Model for Information Diffusion Based on Transformer and Relational Graph Convolutional Network Adaptive Semantic Information Extraction of Tibetan Opera Mask with Recall Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1