基于情景的离散优化基准生成器

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-06 DOI:10.1007/s10589-024-00551-1
Matheus Bernardelli de Moraes, Guilherme Palermo Coelho
{"title":"基于情景的离散优化基准生成器","authors":"Matheus Bernardelli de Moraes, Guilherme Palermo Coelho","doi":"10.1007/s10589-024-00551-1","DOIUrl":null,"url":null,"abstract":"<p>Multi-objective evolutionary algorithms (MOEAs) are a practical tool to solve non-linear problems with multiple objective functions. However, when applied to expensive black-box scenario-based optimization problems, MOEA’s performance becomes constrained due to computational or time limitations. Scenario-based optimization refers to problems that are subject to uncertainty, where each solution is evaluated over an ensemble of scenarios to reduce risks. A primary reason for MOEA’s failure is that algorithm development is challenging in these cases as many of these problems are black-box, high-dimensional, discrete, and computationally expensive. For this reason, this paper proposes a benchmark generator to create fast-to-compute scenario-based discrete test problems with different degrees of complexity. Our framework uses the structure of the Multi-Objective Knapsack Problem to create test problems that simulate characteristics of expensive scenario-based discrete problems. To validate our proposition, we tested four state-of-the-art MOEAs in 30 test instances generated with our framework, and the empirical results demonstrate that the suggested benchmark generator can analyze the ability of MOEAs in tackling expensive scenario-based discrete optimization problems.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A benchmark generator for scenario-based discrete optimization\",\"authors\":\"Matheus Bernardelli de Moraes, Guilherme Palermo Coelho\",\"doi\":\"10.1007/s10589-024-00551-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-objective evolutionary algorithms (MOEAs) are a practical tool to solve non-linear problems with multiple objective functions. However, when applied to expensive black-box scenario-based optimization problems, MOEA’s performance becomes constrained due to computational or time limitations. Scenario-based optimization refers to problems that are subject to uncertainty, where each solution is evaluated over an ensemble of scenarios to reduce risks. A primary reason for MOEA’s failure is that algorithm development is challenging in these cases as many of these problems are black-box, high-dimensional, discrete, and computationally expensive. For this reason, this paper proposes a benchmark generator to create fast-to-compute scenario-based discrete test problems with different degrees of complexity. Our framework uses the structure of the Multi-Objective Knapsack Problem to create test problems that simulate characteristics of expensive scenario-based discrete problems. To validate our proposition, we tested four state-of-the-art MOEAs in 30 test instances generated with our framework, and the empirical results demonstrate that the suggested benchmark generator can analyze the ability of MOEAs in tackling expensive scenario-based discrete optimization problems.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00551-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00551-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多目标进化算法(MOEA)是解决具有多个目标函数的非线性问题的实用工具。然而,当应用于昂贵的基于场景的黑箱优化问题时,由于计算或时间限制,MOEA 的性能会受到制约。基于情景的优化指的是具有不确定性的问题,在这种情况下,每个解决方案都要在一系列情景中进行评估,以降低风险。MOEA 失败的一个主要原因是,在这些情况下,算法开发具有挑战性,因为许多这类问题都是黑箱、高维、离散和计算昂贵的。为此,本文提出了一种基准生成器,用于创建可快速计算的、基于场景的、具有不同复杂度的离散测试问题。我们的框架利用多目标 Knapsack 问题的结构来创建测试问题,模拟昂贵的基于场景的离散问题的特征。为了验证我们的主张,我们在用我们的框架生成的 30 个测试实例中测试了四种最先进的 MOEA,实证结果表明所建议的基准生成器可以分析 MOEA 在处理昂贵的基于场景的离散优化问题方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A benchmark generator for scenario-based discrete optimization

Multi-objective evolutionary algorithms (MOEAs) are a practical tool to solve non-linear problems with multiple objective functions. However, when applied to expensive black-box scenario-based optimization problems, MOEA’s performance becomes constrained due to computational or time limitations. Scenario-based optimization refers to problems that are subject to uncertainty, where each solution is evaluated over an ensemble of scenarios to reduce risks. A primary reason for MOEA’s failure is that algorithm development is challenging in these cases as many of these problems are black-box, high-dimensional, discrete, and computationally expensive. For this reason, this paper proposes a benchmark generator to create fast-to-compute scenario-based discrete test problems with different degrees of complexity. Our framework uses the structure of the Multi-Objective Knapsack Problem to create test problems that simulate characteristics of expensive scenario-based discrete problems. To validate our proposition, we tested four state-of-the-art MOEAs in 30 test instances generated with our framework, and the empirical results demonstrate that the suggested benchmark generator can analyze the ability of MOEAs in tackling expensive scenario-based discrete optimization problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1