{"title":"结构单调夹杂的加速前向后向算法","authors":"Paul-Emile Maingé, André Weng-Law","doi":"10.1007/s10589-023-00547-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates <span>\\((x_n)\\)</span>, with worst-case rates of <span>\\( o(n^{-1})\\)</span> in terms of both the discrete velocity and the fixed point residual, instead of the rates of <span>\\(\\mathcal {O}(n^{-1/2})\\)</span> classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated forward–backward algorithms for structured monotone inclusions\",\"authors\":\"Paul-Emile Maingé, André Weng-Law\",\"doi\":\"10.1007/s10589-023-00547-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates <span>\\\\((x_n)\\\\)</span>, with worst-case rates of <span>\\\\( o(n^{-1})\\\\)</span> in terms of both the discrete velocity and the fixed point residual, instead of the rates of <span>\\\\(\\\\mathcal {O}(n^{-1/2})\\\\)</span> classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00547-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00547-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated forward–backward algorithms for structured monotone inclusions
In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates \((x_n)\), with worst-case rates of \( o(n^{-1})\) in terms of both the discrete velocity and the fixed point residual, instead of the rates of \(\mathcal {O}(n^{-1/2})\) classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.