{"title":"结构单调夹杂的加速前向后向算法","authors":"Paul-Emile Maingé, André Weng-Law","doi":"10.1007/s10589-023-00547-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates <span>\\((x_n)\\)</span>, with worst-case rates of <span>\\( o(n^{-1})\\)</span> in terms of both the discrete velocity and the fixed point residual, instead of the rates of <span>\\(\\mathcal {O}(n^{-1/2})\\)</span> classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated forward–backward algorithms for structured monotone inclusions\",\"authors\":\"Paul-Emile Maingé, André Weng-Law\",\"doi\":\"10.1007/s10589-023-00547-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates <span>\\\\((x_n)\\\\)</span>, with worst-case rates of <span>\\\\( o(n^{-1})\\\\)</span> in terms of both the discrete velocity and the fixed point residual, instead of the rates of <span>\\\\(\\\\mathcal {O}(n^{-1/2})\\\\)</span> classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00547-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00547-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Accelerated forward–backward algorithms for structured monotone inclusions
In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates \((x_n)\), with worst-case rates of \( o(n^{-1})\) in terms of both the discrete velocity and the fixed point residual, instead of the rates of \(\mathcal {O}(n^{-1/2})\) classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.