{"title":"针对脑电信号使用多输入深度特征学习网络自动检测癫痫发作","authors":"Qi Sun, Yuanjian Liu, Shuangde Li","doi":"10.1155/2024/8835396","DOIUrl":null,"url":null,"abstract":"Epilepsy, a neurological disease associated with seizures, affects the normal behavior of human beings. The unpredictability of epileptic seizures has caused great obstacles to the treatment of the disease. The automatic seizure detection method based on electroencephalogram (EEG) can assist experts in predicting seizures to improve treatment efficiency. Epileptic seizure detection cannot be achieved accurately using the single-view characteristics of the signals. Moreover, manual feature extraction is a time-consuming task. To design a high-performance seizure identification method, automatic learning of multi-view features becomes an indispensable part for seizure detection. Therefore, the paper proposes a multi-input deep feature learning networks (MDFLN) model, which comprehensively considers the features from the time domain and the time–frequency (TF) domain for EEG signals. The MDFLN model automatically extracts the feature information of the signals through deep learning networks. Then, the bidirectional long short-term memory (BLSTM) network is used to distinguish seizure and nonseizure events. Furthermore, the effectiveness of the proposed network structure is verified in two public datasets. The experimental results demonstrate that the classification accuracy of the proposed method based on multi-view features is at least 2.2% higher than the single-view features. The MDFLN achieves better performance on CHB-MIT and Bonn datasets with accuracy of 98.09% and 98.4%, respectively. The fine-tuned model with the validation set also improves the classification performance. Compare with the state-of-the-art seizure detection methods, the multi-input deep learning network has superior competence with high sensitivity on the CHB-MIT dataset. The proposed automatic seizure detection method can reduce time consumption and effectively assist experts in the clinical diagnosis and treatment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Seizure Detection Using Multi-Input Deep Feature Learning Networks for EEG Signals\",\"authors\":\"Qi Sun, Yuanjian Liu, Shuangde Li\",\"doi\":\"10.1155/2024/8835396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy, a neurological disease associated with seizures, affects the normal behavior of human beings. The unpredictability of epileptic seizures has caused great obstacles to the treatment of the disease. The automatic seizure detection method based on electroencephalogram (EEG) can assist experts in predicting seizures to improve treatment efficiency. Epileptic seizure detection cannot be achieved accurately using the single-view characteristics of the signals. Moreover, manual feature extraction is a time-consuming task. To design a high-performance seizure identification method, automatic learning of multi-view features becomes an indispensable part for seizure detection. Therefore, the paper proposes a multi-input deep feature learning networks (MDFLN) model, which comprehensively considers the features from the time domain and the time–frequency (TF) domain for EEG signals. The MDFLN model automatically extracts the feature information of the signals through deep learning networks. Then, the bidirectional long short-term memory (BLSTM) network is used to distinguish seizure and nonseizure events. Furthermore, the effectiveness of the proposed network structure is verified in two public datasets. The experimental results demonstrate that the classification accuracy of the proposed method based on multi-view features is at least 2.2% higher than the single-view features. The MDFLN achieves better performance on CHB-MIT and Bonn datasets with accuracy of 98.09% and 98.4%, respectively. The fine-tuned model with the validation set also improves the classification performance. Compare with the state-of-the-art seizure detection methods, the multi-input deep learning network has superior competence with high sensitivity on the CHB-MIT dataset. The proposed automatic seizure detection method can reduce time consumption and effectively assist experts in the clinical diagnosis and treatment.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8835396\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8835396","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Automatic Seizure Detection Using Multi-Input Deep Feature Learning Networks for EEG Signals
Epilepsy, a neurological disease associated with seizures, affects the normal behavior of human beings. The unpredictability of epileptic seizures has caused great obstacles to the treatment of the disease. The automatic seizure detection method based on electroencephalogram (EEG) can assist experts in predicting seizures to improve treatment efficiency. Epileptic seizure detection cannot be achieved accurately using the single-view characteristics of the signals. Moreover, manual feature extraction is a time-consuming task. To design a high-performance seizure identification method, automatic learning of multi-view features becomes an indispensable part for seizure detection. Therefore, the paper proposes a multi-input deep feature learning networks (MDFLN) model, which comprehensively considers the features from the time domain and the time–frequency (TF) domain for EEG signals. The MDFLN model automatically extracts the feature information of the signals through deep learning networks. Then, the bidirectional long short-term memory (BLSTM) network is used to distinguish seizure and nonseizure events. Furthermore, the effectiveness of the proposed network structure is verified in two public datasets. The experimental results demonstrate that the classification accuracy of the proposed method based on multi-view features is at least 2.2% higher than the single-view features. The MDFLN achieves better performance on CHB-MIT and Bonn datasets with accuracy of 98.09% and 98.4%, respectively. The fine-tuned model with the validation set also improves the classification performance. Compare with the state-of-the-art seizure detection methods, the multi-input deep learning network has superior competence with high sensitivity on the CHB-MIT dataset. The proposed automatic seizure detection method can reduce time consumption and effectively assist experts in the clinical diagnosis and treatment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.