G Artioli, S Barone, M Fedi, A Galli, L Liccioli, M Martini, F Marzaioli, F Maspero, L Panzeri, I Passariello, G Ricci, M Secco, F Terrasi
{"title":"在 modis2 互比框架内确定和选择用于放射性碳年代测定的灰泥样本:两种比较程序","authors":"G Artioli, S Barone, M Fedi, A Galli, L Liccioli, M Martini, F Marzaioli, F Maspero, L Panzeri, I Passariello, G Ricci, M Secco, F Terrasi","doi":"10.1017/rdc.2024.3","DOIUrl":null,"url":null,"abstract":"For several decades, many efforts have been dedicated to enhancing the accuracy of mortar radiocarbon dating and evaluating the reliability of the results concerning the typology of the examined specimens. Several assumptions that are fundamental for the application of the method may be in many cases not fulfilled, such as (a) complete primary limestone dissociation during calcination, (b) efficient separation of geogenic carbon contained in calcareous aggregates, (c) short carbonation time, and (d) absence of secondary calcite. Many laboratories all over the world have proposed different methods to select suitable fractions of mortar. The first intercomparison attempt, involving eight international laboratories, was organized in 2016 aiming at comparing and statistically treating the results obtained on the same materials by different laboratories with their own characterization and pre-treatment methods (Hajdas et al. 2017; Hayen et al. 2017). Following this first step, a new intercomparison experiment was proposed and set up in 2018 during the Mortar Dating International Meeting (Bordeaux, FR). A new set of three mortar samples was chosen, taking care of the selection of standardized materials (homogeneity, known mineralogical composition, absence of exogenous inclusions, known expected age). This work describes the results of two research teams involved in the intercomparison. The samples were characterized, selected, and dated depending on each laboratory strategy. The results stress the importance of the characterization of the raw material is to better understand the mineralogical and petrographical composition of the samples. Such information can support the choice of the most appropriate strategy for the extraction of CO<jats:sub>2</jats:sub> and then for data interpretation.","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":"12 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHARACTERIZATION AND SELECTION OF MORTAR SAMPLES FOR RADIOCARBON DATING IN THE FRAMEWORK OF THE MODIS2 INTERCOMPARISON: TWO COMPARED PROCEDURES\",\"authors\":\"G Artioli, S Barone, M Fedi, A Galli, L Liccioli, M Martini, F Marzaioli, F Maspero, L Panzeri, I Passariello, G Ricci, M Secco, F Terrasi\",\"doi\":\"10.1017/rdc.2024.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For several decades, many efforts have been dedicated to enhancing the accuracy of mortar radiocarbon dating and evaluating the reliability of the results concerning the typology of the examined specimens. Several assumptions that are fundamental for the application of the method may be in many cases not fulfilled, such as (a) complete primary limestone dissociation during calcination, (b) efficient separation of geogenic carbon contained in calcareous aggregates, (c) short carbonation time, and (d) absence of secondary calcite. Many laboratories all over the world have proposed different methods to select suitable fractions of mortar. The first intercomparison attempt, involving eight international laboratories, was organized in 2016 aiming at comparing and statistically treating the results obtained on the same materials by different laboratories with their own characterization and pre-treatment methods (Hajdas et al. 2017; Hayen et al. 2017). Following this first step, a new intercomparison experiment was proposed and set up in 2018 during the Mortar Dating International Meeting (Bordeaux, FR). A new set of three mortar samples was chosen, taking care of the selection of standardized materials (homogeneity, known mineralogical composition, absence of exogenous inclusions, known expected age). This work describes the results of two research teams involved in the intercomparison. The samples were characterized, selected, and dated depending on each laboratory strategy. The results stress the importance of the characterization of the raw material is to better understand the mineralogical and petrographical composition of the samples. Such information can support the choice of the most appropriate strategy for the extraction of CO<jats:sub>2</jats:sub> and then for data interpretation.\",\"PeriodicalId\":21020,\"journal\":{\"name\":\"Radiocarbon\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiocarbon\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/rdc.2024.3\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/rdc.2024.3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
CHARACTERIZATION AND SELECTION OF MORTAR SAMPLES FOR RADIOCARBON DATING IN THE FRAMEWORK OF THE MODIS2 INTERCOMPARISON: TWO COMPARED PROCEDURES
For several decades, many efforts have been dedicated to enhancing the accuracy of mortar radiocarbon dating and evaluating the reliability of the results concerning the typology of the examined specimens. Several assumptions that are fundamental for the application of the method may be in many cases not fulfilled, such as (a) complete primary limestone dissociation during calcination, (b) efficient separation of geogenic carbon contained in calcareous aggregates, (c) short carbonation time, and (d) absence of secondary calcite. Many laboratories all over the world have proposed different methods to select suitable fractions of mortar. The first intercomparison attempt, involving eight international laboratories, was organized in 2016 aiming at comparing and statistically treating the results obtained on the same materials by different laboratories with their own characterization and pre-treatment methods (Hajdas et al. 2017; Hayen et al. 2017). Following this first step, a new intercomparison experiment was proposed and set up in 2018 during the Mortar Dating International Meeting (Bordeaux, FR). A new set of three mortar samples was chosen, taking care of the selection of standardized materials (homogeneity, known mineralogical composition, absence of exogenous inclusions, known expected age). This work describes the results of two research teams involved in the intercomparison. The samples were characterized, selected, and dated depending on each laboratory strategy. The results stress the importance of the characterization of the raw material is to better understand the mineralogical and petrographical composition of the samples. Such information can support the choice of the most appropriate strategy for the extraction of CO2 and then for data interpretation.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.