{"title":"整合子系统嵌入子代数和耦合簇格林函数:激励流形中量子嵌入的理论基础","authors":"Bo Peng, Karol Kowalski","doi":"10.1088/2516-1075/ad1e3b","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a novel approach to coupled-cluster Green’s function (CCGF) embedding by seamlessly integrating conventional CCGF theory with the state-of-the-art sub-system embedding sub-algebras coupled cluster (SES-CC) formalism. This integration focuses primarily on delineating the characteristics of the sub-system and the corresponding segments of the Green’s function, defined explicitly by active orbitals. Crucially, our work involves the adaptation of the SES-CC paradigm, addressing the left eigenvalue problem through a distinct form of Hamiltonian similarity transformation. This advancement not only facilitates a comprehensive representation of the interaction between the embedded sub-system and its surrounding environment but also paves the way for the quantum mechanical description of multiple embedded domains, particularly by employing the emergent quantum flow algorithms. Our theoretical underpinnings further set the stage for a generalization to multiple embedded sub-systems. This expansion holds significant promise for the exploration and application of non-equilibrium quantum systems, enhancing the understanding of system–environment interactions. In doing so, the research underscores the potential of SES-CC embedding within the realm of quantum computations and multi-scale simulations, promising a good balance between accuracy and computational efficiency.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"92 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating subsystem embedding subalgebras and coupled cluster Green’s function: a theoretical foundation for quantum embedding in excitation manifold\",\"authors\":\"Bo Peng, Karol Kowalski\",\"doi\":\"10.1088/2516-1075/ad1e3b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a novel approach to coupled-cluster Green’s function (CCGF) embedding by seamlessly integrating conventional CCGF theory with the state-of-the-art sub-system embedding sub-algebras coupled cluster (SES-CC) formalism. This integration focuses primarily on delineating the characteristics of the sub-system and the corresponding segments of the Green’s function, defined explicitly by active orbitals. Crucially, our work involves the adaptation of the SES-CC paradigm, addressing the left eigenvalue problem through a distinct form of Hamiltonian similarity transformation. This advancement not only facilitates a comprehensive representation of the interaction between the embedded sub-system and its surrounding environment but also paves the way for the quantum mechanical description of multiple embedded domains, particularly by employing the emergent quantum flow algorithms. Our theoretical underpinnings further set the stage for a generalization to multiple embedded sub-systems. This expansion holds significant promise for the exploration and application of non-equilibrium quantum systems, enhancing the understanding of system–environment interactions. In doing so, the research underscores the potential of SES-CC embedding within the realm of quantum computations and multi-scale simulations, promising a good balance between accuracy and computational efficiency.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ad1e3b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad1e3b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Integrating subsystem embedding subalgebras and coupled cluster Green’s function: a theoretical foundation for quantum embedding in excitation manifold
In this study, we introduce a novel approach to coupled-cluster Green’s function (CCGF) embedding by seamlessly integrating conventional CCGF theory with the state-of-the-art sub-system embedding sub-algebras coupled cluster (SES-CC) formalism. This integration focuses primarily on delineating the characteristics of the sub-system and the corresponding segments of the Green’s function, defined explicitly by active orbitals. Crucially, our work involves the adaptation of the SES-CC paradigm, addressing the left eigenvalue problem through a distinct form of Hamiltonian similarity transformation. This advancement not only facilitates a comprehensive representation of the interaction between the embedded sub-system and its surrounding environment but also paves the way for the quantum mechanical description of multiple embedded domains, particularly by employing the emergent quantum flow algorithms. Our theoretical underpinnings further set the stage for a generalization to multiple embedded sub-systems. This expansion holds significant promise for the exploration and application of non-equilibrium quantum systems, enhancing the understanding of system–environment interactions. In doing so, the research underscores the potential of SES-CC embedding within the realm of quantum computations and multi-scale simulations, promising a good balance between accuracy and computational efficiency.