Eduardo Luís Menezes de Almeida, Eduard J. Kerkhoven, Wendel Batista da Silveira
{"title":"非常规酵母菌基因组尺度代谢模型的重建:现状、挑战和前景","authors":"Eduardo Luís Menezes de Almeida, Eduard J. Kerkhoven, Wendel Batista da Silveira","doi":"10.1007/s12257-024-00009-5","DOIUrl":null,"url":null,"abstract":"<p>Non-conventional yeasts are promising cell factories to produce lipids and oleochemicals, metabolites of industrial interest (<i>e.g</i>., organics acids, esters, and alcohols), and enzymes. They can also use different agro-industrial by-products as substrates within the context of a circular economy. Some of these yeasts can also comprise economic and health burdens as pathogens. Genome-scale metabolic models (GEMs), networks reconstructed based on the genomic and metabolic information of one or more organisms, are great tools to understand metabolic functions and landscapes, as well as propose engineering targets to improve metabolite production or propose novel drug targets. Previous reviews on yeast GEMs have mainly focused on the history and the evaluation of <i>Saccharomyces cerevisiae</i> modeling paradigms or the accessibility and usability of yeast GEMs. However, they did not describe the reconstruction strategies, limitations, validations, challenges, and research gaps of non-conventional yeast GEMs. Herein, we focused on the reconstruction of available non-<i>Saccharomyces</i> GEMs, their validation, underscoring the physiological insights, as well as the identification of both metabolic engineering and drug targets. We also discuss the challenges and knowledge gaps and propose strategies to boost their use and novel reconstructions.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of genome-scale metabolic models of non-conventional yeasts: current state, challenges, and perspectives\",\"authors\":\"Eduardo Luís Menezes de Almeida, Eduard J. Kerkhoven, Wendel Batista da Silveira\",\"doi\":\"10.1007/s12257-024-00009-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-conventional yeasts are promising cell factories to produce lipids and oleochemicals, metabolites of industrial interest (<i>e.g</i>., organics acids, esters, and alcohols), and enzymes. They can also use different agro-industrial by-products as substrates within the context of a circular economy. Some of these yeasts can also comprise economic and health burdens as pathogens. Genome-scale metabolic models (GEMs), networks reconstructed based on the genomic and metabolic information of one or more organisms, are great tools to understand metabolic functions and landscapes, as well as propose engineering targets to improve metabolite production or propose novel drug targets. Previous reviews on yeast GEMs have mainly focused on the history and the evaluation of <i>Saccharomyces cerevisiae</i> modeling paradigms or the accessibility and usability of yeast GEMs. However, they did not describe the reconstruction strategies, limitations, validations, challenges, and research gaps of non-conventional yeast GEMs. Herein, we focused on the reconstruction of available non-<i>Saccharomyces</i> GEMs, their validation, underscoring the physiological insights, as well as the identification of both metabolic engineering and drug targets. We also discuss the challenges and knowledge gaps and propose strategies to boost their use and novel reconstructions.</p>\",\"PeriodicalId\":8936,\"journal\":{\"name\":\"Biotechnology and Bioprocess Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioprocess Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12257-024-00009-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00009-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Reconstruction of genome-scale metabolic models of non-conventional yeasts: current state, challenges, and perspectives
Non-conventional yeasts are promising cell factories to produce lipids and oleochemicals, metabolites of industrial interest (e.g., organics acids, esters, and alcohols), and enzymes. They can also use different agro-industrial by-products as substrates within the context of a circular economy. Some of these yeasts can also comprise economic and health burdens as pathogens. Genome-scale metabolic models (GEMs), networks reconstructed based on the genomic and metabolic information of one or more organisms, are great tools to understand metabolic functions and landscapes, as well as propose engineering targets to improve metabolite production or propose novel drug targets. Previous reviews on yeast GEMs have mainly focused on the history and the evaluation of Saccharomyces cerevisiae modeling paradigms or the accessibility and usability of yeast GEMs. However, they did not describe the reconstruction strategies, limitations, validations, challenges, and research gaps of non-conventional yeast GEMs. Herein, we focused on the reconstruction of available non-Saccharomyces GEMs, their validation, underscoring the physiological insights, as well as the identification of both metabolic engineering and drug targets. We also discuss the challenges and knowledge gaps and propose strategies to boost their use and novel reconstructions.
期刊介绍:
Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.