Jeong Hyeon Hwang, Hyun Joong Kim, Hyun Jin Kim, Nara Shin, Suk Jin Oh, Jeong-Hoon Park, Won-Dong Cho, Jungoh Ahn, Shashi Kant Bhatia, Yung-Hun Yang
{"title":"厌氧消化污泥中的新型梭状芽孢杆菌 JH03 利用海藻生物质生产基于半乳糖的生物氢","authors":"Jeong Hyeon Hwang, Hyun Joong Kim, Hyun Jin Kim, Nara Shin, Suk Jin Oh, Jeong-Hoon Park, Won-Dong Cho, Jungoh Ahn, Shashi Kant Bhatia, Yung-Hun Yang","doi":"10.1007/s12257-024-00013-9","DOIUrl":null,"url":null,"abstract":"<p>Seaweed biomass in Korea is rich in galactose following hydrolysis, and leveraging this resource for enhancing the biohydrogen production is the aim of this study. The study investigates the biohydrogen production potential of a newly isolated pure strain, <i>Clostridium</i> sp. JH03, utilizing galactose and seaweed biomass as renewable feedstocks. The strain could utilize galactose as the sole carbon source for biohydrogen production, with a maximum hydrogen yield of 1.61 mol H<sub>2</sub>/mol galactose. The parameters included pH, temperature, and initial galactose concentration, which were varied to determine the optimal conditions for maximum biohydrogen production. The optimal conditions for biohydrogen production were pH 9 and a temperature of 25 °C, with an initial galactose concentration of 10 g/L. Moreover, hydrogen production from seaweed hydrolysate by <i>Clostridium</i> sp. JH03 resulted in maximum production of 1.71 mol H<sub>2</sub>/mol galactose. The study also investigated that combining sludge, a common practice in dark fermentation, with JH03 increased biohydrogen production by up to 34%. By addressing the need for clean energy and reducing raw materials price using biomass, this study contributes to the advancement of sustainable and cost-compatible energy solutions.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":"16 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galactose-based biohydrogen production from seaweed biomass by novel strain Clostridium sp. JH03 from anaerobic digester sludge\",\"authors\":\"Jeong Hyeon Hwang, Hyun Joong Kim, Hyun Jin Kim, Nara Shin, Suk Jin Oh, Jeong-Hoon Park, Won-Dong Cho, Jungoh Ahn, Shashi Kant Bhatia, Yung-Hun Yang\",\"doi\":\"10.1007/s12257-024-00013-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seaweed biomass in Korea is rich in galactose following hydrolysis, and leveraging this resource for enhancing the biohydrogen production is the aim of this study. The study investigates the biohydrogen production potential of a newly isolated pure strain, <i>Clostridium</i> sp. JH03, utilizing galactose and seaweed biomass as renewable feedstocks. The strain could utilize galactose as the sole carbon source for biohydrogen production, with a maximum hydrogen yield of 1.61 mol H<sub>2</sub>/mol galactose. The parameters included pH, temperature, and initial galactose concentration, which were varied to determine the optimal conditions for maximum biohydrogen production. The optimal conditions for biohydrogen production were pH 9 and a temperature of 25 °C, with an initial galactose concentration of 10 g/L. Moreover, hydrogen production from seaweed hydrolysate by <i>Clostridium</i> sp. JH03 resulted in maximum production of 1.71 mol H<sub>2</sub>/mol galactose. The study also investigated that combining sludge, a common practice in dark fermentation, with JH03 increased biohydrogen production by up to 34%. By addressing the need for clean energy and reducing raw materials price using biomass, this study contributes to the advancement of sustainable and cost-compatible energy solutions.</p>\",\"PeriodicalId\":8936,\"journal\":{\"name\":\"Biotechnology and Bioprocess Engineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioprocess Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12257-024-00013-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00013-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Galactose-based biohydrogen production from seaweed biomass by novel strain Clostridium sp. JH03 from anaerobic digester sludge
Seaweed biomass in Korea is rich in galactose following hydrolysis, and leveraging this resource for enhancing the biohydrogen production is the aim of this study. The study investigates the biohydrogen production potential of a newly isolated pure strain, Clostridium sp. JH03, utilizing galactose and seaweed biomass as renewable feedstocks. The strain could utilize galactose as the sole carbon source for biohydrogen production, with a maximum hydrogen yield of 1.61 mol H2/mol galactose. The parameters included pH, temperature, and initial galactose concentration, which were varied to determine the optimal conditions for maximum biohydrogen production. The optimal conditions for biohydrogen production were pH 9 and a temperature of 25 °C, with an initial galactose concentration of 10 g/L. Moreover, hydrogen production from seaweed hydrolysate by Clostridium sp. JH03 resulted in maximum production of 1.71 mol H2/mol galactose. The study also investigated that combining sludge, a common practice in dark fermentation, with JH03 increased biohydrogen production by up to 34%. By addressing the need for clean energy and reducing raw materials price using biomass, this study contributes to the advancement of sustainable and cost-compatible energy solutions.
期刊介绍:
Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.