Fredrik Lindberg, Anders Lindström, Ville Stålnacke, Sofia Thorsson, Georgia Destouni
{"title":"对城市地区蚊虫流行情况的观察和建模 - 瑞典乌普萨拉的案例研究","authors":"Fredrik Lindberg, Anders Lindström, Ville Stålnacke, Sofia Thorsson, Georgia Destouni","doi":"10.1007/s11252-024-01511-7","DOIUrl":null,"url":null,"abstract":"<p>Urban green–blue infrastructure (GBI) can provide important benefits to urban residents but may also affect mosquito abundance, with associated negative nuisance and infection transmission impacts. This study addresses important knowledge and quantification gaps for the relationships between mosquito prevalence and GBI features within cities. This is done for the city of Uppsala in Sweden as an urban case example, where mosquitos were captured and ambient air temperature and humidity were observed at seven different locations in the summer of 2022. A weighted multi-critera analysis (WMCA) model was developed based on relevant open data and open tools for resolving the mosquito (<i>Culex pipiens</i>) variations based on geographical variables, such as land cover/use, leaf area index, and building and green (vegetation) area fractions, within the city. The results show a clear relationship between mosquito prevalence and green-area fraction (of grass and trees), indicating that urban GBI extension can enhance mosquito prevalence, with possible associated negative impacts. This relationship is supported directly by data, showing significantly higher mosquito prevalence with higher ambient humidity, which in turn is related to larger green-area fraction. The developed WMCA model emerges as a promising tool, e.g., for urban development planning that needs to account for and seek relevant trade-off balances between positive and negative effects of urban GBI changes.</p>","PeriodicalId":48869,"journal":{"name":"Urban Ecosystems","volume":"64 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations and modelling of mosquito prevalence within urban areas – A case study from Uppsala, Sweden\",\"authors\":\"Fredrik Lindberg, Anders Lindström, Ville Stålnacke, Sofia Thorsson, Georgia Destouni\",\"doi\":\"10.1007/s11252-024-01511-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urban green–blue infrastructure (GBI) can provide important benefits to urban residents but may also affect mosquito abundance, with associated negative nuisance and infection transmission impacts. This study addresses important knowledge and quantification gaps for the relationships between mosquito prevalence and GBI features within cities. This is done for the city of Uppsala in Sweden as an urban case example, where mosquitos were captured and ambient air temperature and humidity were observed at seven different locations in the summer of 2022. A weighted multi-critera analysis (WMCA) model was developed based on relevant open data and open tools for resolving the mosquito (<i>Culex pipiens</i>) variations based on geographical variables, such as land cover/use, leaf area index, and building and green (vegetation) area fractions, within the city. The results show a clear relationship between mosquito prevalence and green-area fraction (of grass and trees), indicating that urban GBI extension can enhance mosquito prevalence, with possible associated negative impacts. This relationship is supported directly by data, showing significantly higher mosquito prevalence with higher ambient humidity, which in turn is related to larger green-area fraction. The developed WMCA model emerges as a promising tool, e.g., for urban development planning that needs to account for and seek relevant trade-off balances between positive and negative effects of urban GBI changes.</p>\",\"PeriodicalId\":48869,\"journal\":{\"name\":\"Urban Ecosystems\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Ecosystems\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11252-024-01511-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11252-024-01511-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Observations and modelling of mosquito prevalence within urban areas – A case study from Uppsala, Sweden
Urban green–blue infrastructure (GBI) can provide important benefits to urban residents but may also affect mosquito abundance, with associated negative nuisance and infection transmission impacts. This study addresses important knowledge and quantification gaps for the relationships between mosquito prevalence and GBI features within cities. This is done for the city of Uppsala in Sweden as an urban case example, where mosquitos were captured and ambient air temperature and humidity were observed at seven different locations in the summer of 2022. A weighted multi-critera analysis (WMCA) model was developed based on relevant open data and open tools for resolving the mosquito (Culex pipiens) variations based on geographical variables, such as land cover/use, leaf area index, and building and green (vegetation) area fractions, within the city. The results show a clear relationship between mosquito prevalence and green-area fraction (of grass and trees), indicating that urban GBI extension can enhance mosquito prevalence, with possible associated negative impacts. This relationship is supported directly by data, showing significantly higher mosquito prevalence with higher ambient humidity, which in turn is related to larger green-area fraction. The developed WMCA model emerges as a promising tool, e.g., for urban development planning that needs to account for and seek relevant trade-off balances between positive and negative effects of urban GBI changes.
期刊介绍:
Urban Ecosystems is an international journal devoted to scientific investigations of urban environments and the relationships between socioeconomic and ecological structures and processes in urban environments. The scope of the journal is broad, including interactions between urban ecosystems and associated suburban and rural environments. Contributions may span a range of specific subject areas as they may apply to urban environments: biodiversity, biogeochemistry, conservation biology, wildlife and fisheries management, ecosystem ecology, ecosystem services, environmental chemistry, hydrology, landscape architecture, meteorology and climate, policy, population biology, social and human ecology, soil science, and urban planning.