黄河颗粒有机碳迁移的河道断面异质性

IF 2.8 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Dynamics Pub Date : 2024-02-15 DOI:10.5194/esurf-12-347-2024
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, Cécile Quantin
{"title":"黄河颗粒有机碳迁移的河道断面异质性","authors":"Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, Cécile Quantin","doi":"10.5194/esurf-12-347-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The Huanghe (Yellow River), one of the largest turbid river systems in the world, has long been recognized as a major contributor of suspended particulate matter (SPM) to the ocean. However, over the last few decades, the SPM export flux of the Huanghe has decreased over 90 % due to the high management, impacting the global export of particulate organic carbon (POC). To better constrain sources and modes of transport of POC beyond the previously investigated transportation of POC near the channel surface, SPM samples were for the first time collected over a whole channel cross-section in the lower Huanghe. Riverine SPM samples were analyzed for particle size and major element contents, as well as for POC content and dual carbon isotopes (13C and 14C). Clear vertical and lateral heterogeneities of the physical and chemical properties of SPM are observed within the river cross-section. For instance, finer SPM carry more POC in general with higher 14C activity near the surface of the right bank. Notably, we discuss how bank erosion in the alluvial plain is likely to generate lateral heterogeneity in POC composition. The Huanghe POC is millennial-aged (4020 ± 500 radiocarbon years) and dominated by organic carbon (OC) from the biosphere, while the lithospheric fraction is ca. 12 %. The mobilization of aged and refractory OC, including radiocarbon-dead biospheric OC, from deeper soil horizons of the loess–paleosol sequence through erosion in the Chinese Loess Plateau is an important mechanism contributing to fluvial POC in the Huanghe drainage basin. Altogether, anthropogenic activities can drastically change the compositions and transport dynamics of fluvial POC, consequentially altering the feedback of the source-to-sink trajectory of a river system to regional and global carbon cycles.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"5 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe\",\"authors\":\"Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, Cécile Quantin\",\"doi\":\"10.5194/esurf-12-347-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Huanghe (Yellow River), one of the largest turbid river systems in the world, has long been recognized as a major contributor of suspended particulate matter (SPM) to the ocean. However, over the last few decades, the SPM export flux of the Huanghe has decreased over 90 % due to the high management, impacting the global export of particulate organic carbon (POC). To better constrain sources and modes of transport of POC beyond the previously investigated transportation of POC near the channel surface, SPM samples were for the first time collected over a whole channel cross-section in the lower Huanghe. Riverine SPM samples were analyzed for particle size and major element contents, as well as for POC content and dual carbon isotopes (13C and 14C). Clear vertical and lateral heterogeneities of the physical and chemical properties of SPM are observed within the river cross-section. For instance, finer SPM carry more POC in general with higher 14C activity near the surface of the right bank. Notably, we discuss how bank erosion in the alluvial plain is likely to generate lateral heterogeneity in POC composition. The Huanghe POC is millennial-aged (4020 ± 500 radiocarbon years) and dominated by organic carbon (OC) from the biosphere, while the lithospheric fraction is ca. 12 %. The mobilization of aged and refractory OC, including radiocarbon-dead biospheric OC, from deeper soil horizons of the loess–paleosol sequence through erosion in the Chinese Loess Plateau is an important mechanism contributing to fluvial POC in the Huanghe drainage basin. Altogether, anthropogenic activities can drastically change the compositions and transport dynamics of fluvial POC, consequentially altering the feedback of the source-to-sink trajectory of a river system to regional and global carbon cycles.\",\"PeriodicalId\":48749,\"journal\":{\"name\":\"Earth Surface Dynamics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/esurf-12-347-2024\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/esurf-12-347-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要黄河是世界上最大的浑浊河流之一,长期以来一直被认为是向海洋排放悬浮颗粒物(SPM)的主要来源。然而,在过去的几十年里,由于管理水平较高,黄河的 SPM 出口通量下降了 90% 以上,影响了全球颗粒有机碳 (POC) 的出口。为了更好地确定 POC 的来源和传输模式,除了之前调查的河道表面附近的 POC 传输外,还首次在黄河下游整个河道断面采集了 SPM 样品。对河道 SPM 样品进行了粒度、主要元素含量、POC 含量和双碳同位素(13C 和 14C)分析。在河道断面内,SPM 的物理和化学性质存在明显的纵向和横向异质性。例如,较细的 SPM 一般携带更多的 POC,右岸表面附近的 14C 活性较高。值得注意的是,我们讨论了冲积平原的河岸侵蚀如何可能导致 POC 成分的横向异质性。黄河 POC 的年龄为千年(4020 ± 500 放射性碳年),主要由来自生物圈的有机碳(OC)构成,而岩石圈部分约占 12%。通过中国黄土高原的侵蚀作用,从黄土-古土壤层序的深层土壤地层中移动了老化的难溶性有机碳,包括放射性碳死亡的生物圈有机碳,这是黄河流域河流有机碳的一个重要机制。总之,人类活动可以极大地改变河流 POC 的组成和迁移动力学,从而改变河流系统从源到汇的轨迹对区域和全球碳循环的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe
Abstract. The Huanghe (Yellow River), one of the largest turbid river systems in the world, has long been recognized as a major contributor of suspended particulate matter (SPM) to the ocean. However, over the last few decades, the SPM export flux of the Huanghe has decreased over 90 % due to the high management, impacting the global export of particulate organic carbon (POC). To better constrain sources and modes of transport of POC beyond the previously investigated transportation of POC near the channel surface, SPM samples were for the first time collected over a whole channel cross-section in the lower Huanghe. Riverine SPM samples were analyzed for particle size and major element contents, as well as for POC content and dual carbon isotopes (13C and 14C). Clear vertical and lateral heterogeneities of the physical and chemical properties of SPM are observed within the river cross-section. For instance, finer SPM carry more POC in general with higher 14C activity near the surface of the right bank. Notably, we discuss how bank erosion in the alluvial plain is likely to generate lateral heterogeneity in POC composition. The Huanghe POC is millennial-aged (4020 ± 500 radiocarbon years) and dominated by organic carbon (OC) from the biosphere, while the lithospheric fraction is ca. 12 %. The mobilization of aged and refractory OC, including radiocarbon-dead biospheric OC, from deeper soil horizons of the loess–paleosol sequence through erosion in the Chinese Loess Plateau is an important mechanism contributing to fluvial POC in the Huanghe drainage basin. Altogether, anthropogenic activities can drastically change the compositions and transport dynamics of fluvial POC, consequentially altering the feedback of the source-to-sink trajectory of a river system to regional and global carbon cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Surface Dynamics
Earth Surface Dynamics GEOGRAPHY, PHYSICALGEOSCIENCES, MULTIDISCI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
5.40
自引率
5.90%
发文量
56
审稿时长
20 weeks
期刊介绍: Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth''s surface and their interactions on all scales.
期刊最新文献
Exotic tree plantations in the Chilean Coastal Range: balancing the effects of discrete disturbances, connectivity, and a persistent drought on catchment erosion Role of the forcing sources in morphodynamic modelling of an embayed beach Equilibrium distance from long-range dune interactions An empirically-derived hydraulic head model controlling water storage and outflow over a decade in degraded permafrost rock slopes (Zugspitze, D/A) Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1