评估大型语言模型代码生成能力的框架

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-02-14 DOI:10.4218/etrij.2023-0357
Sangyeop Yeo, Yu-Seung Ma, Sang Cheol Kim, Hyungkook Jun, Taeho Kim
{"title":"评估大型语言模型代码生成能力的框架","authors":"Sangyeop Yeo,&nbsp;Yu-Seung Ma,&nbsp;Sang Cheol Kim,&nbsp;Hyungkook Jun,&nbsp;Taeho Kim","doi":"10.4218/etrij.2023-0357","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, \n<math>\n <mi>p</mi>\n <mi>a</mi>\n <mi>s</mi>\n <mi>s</mi>\n <mtext>-</mtext>\n <mi>r</mi>\n <mi>a</mi>\n <mi>t</mi>\n <mi>i</mi>\n <mi>o</mi>\n <mi>@</mi>\n <mi>n</mi></math>, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the \n<math>\n <mi>p</mi>\n <mi>a</mi>\n <mi>s</mi>\n <mi>s</mi>\n <mtext>-</mtext>\n <mi>r</mi>\n <mi>a</mi>\n <mi>t</mi>\n <mi>i</mi>\n <mi>o</mi>\n <mi>@</mi>\n <mi>n</mi></math> metric.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 1","pages":"106-117"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0357","citationCount":"0","resultStr":"{\"title\":\"Framework for evaluating code generation ability of large language models\",\"authors\":\"Sangyeop Yeo,&nbsp;Yu-Seung Ma,&nbsp;Sang Cheol Kim,&nbsp;Hyungkook Jun,&nbsp;Taeho Kim\",\"doi\":\"10.4218/etrij.2023-0357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, \\n<math>\\n <mi>p</mi>\\n <mi>a</mi>\\n <mi>s</mi>\\n <mi>s</mi>\\n <mtext>-</mtext>\\n <mi>r</mi>\\n <mi>a</mi>\\n <mi>t</mi>\\n <mi>i</mi>\\n <mi>o</mi>\\n <mi>@</mi>\\n <mi>n</mi></math>, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the \\n<math>\\n <mi>p</mi>\\n <mi>a</mi>\\n <mi>s</mi>\\n <mi>s</mi>\\n <mtext>-</mtext>\\n <mi>r</mi>\\n <mi>a</mi>\\n <mi>t</mi>\\n <mi>i</mi>\\n <mi>o</mi>\\n <mi>@</mi>\\n <mi>n</mi></math> metric.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"46 1\",\"pages\":\"106-117\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0357\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0357\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0357","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)在自然语言处理领域的各种应用中掀起了一场革命,并在生成程序代码方面表现出了卓越的能力。我们提出了一个用于评估 LLM 代码生成能力的框架,并引入了一个新指标:pass-ratio@n$$ pass\hbox{-} ratio@n$$,该指标根据测试用例的通过率来捕捉准确性的粒度。该框架旨在实现全自动,以处理生成提示、进行推理和执行生成代码所涉及的重复性工作。以提示细节、问题发布日期和难度级别为重点的初步评估表明,我们的框架与 LeetCode 编码平台的集成非常成功,并突出了 pass-ratio@n$$ pass\hbox{-} ratio@n$ 度量的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Framework for evaluating code generation ability of large language models

Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, p a s s - r a t i o @ n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the p a s s - r a t i o @ n metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1