利用迁移学习和小型人类与元伪标签数据集进行命名实体识别

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-02-14 DOI:10.4218/etrij.2023-0321
Kyoungman Bae, Joon-Ho Lim
{"title":"利用迁移学习和小型人类与元伪标签数据集进行命名实体识别","authors":"Kyoungman Bae,&nbsp;Joon-Ho Lim","doi":"10.4218/etrij.2023-0321","DOIUrl":null,"url":null,"abstract":"<p>We introduce a high-performance named entity recognition (NER) model for written and spoken language. To overcome challenges related to labeled data scarcity and domain shifts, we use transfer learning to leverage our previously developed KorBERT as the base model. We also adopt a meta-pseudo-label method using a teacher/student framework with labeled and unlabeled data. Our model presents two modifications. First, the student model is updated with an average loss from both human- and pseudo-labeled data. Second, the influence of noisy pseudo-labeled data is mitigated by considering feedback scores and updating the teacher model only when below a threshold (0.0005). We achieve the target NER performance in the spoken language domain and improve that in the written language domain by proposing a straightforward rollback method that reverts to the best model based on scarce human-labeled data. Further improvement is achieved by adjusting the label vector weights in the named entity dictionary.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 1","pages":"59-70"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0321","citationCount":"0","resultStr":"{\"title\":\"Named entity recognition using transfer learning and small human- and meta-pseudo-labeled datasets\",\"authors\":\"Kyoungman Bae,&nbsp;Joon-Ho Lim\",\"doi\":\"10.4218/etrij.2023-0321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a high-performance named entity recognition (NER) model for written and spoken language. To overcome challenges related to labeled data scarcity and domain shifts, we use transfer learning to leverage our previously developed KorBERT as the base model. We also adopt a meta-pseudo-label method using a teacher/student framework with labeled and unlabeled data. Our model presents two modifications. First, the student model is updated with an average loss from both human- and pseudo-labeled data. Second, the influence of noisy pseudo-labeled data is mitigated by considering feedback scores and updating the teacher model only when below a threshold (0.0005). We achieve the target NER performance in the spoken language domain and improve that in the written language domain by proposing a straightforward rollback method that reverts to the best model based on scarce human-labeled data. Further improvement is achieved by adjusting the label vector weights in the named entity dictionary.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"46 1\",\"pages\":\"59-70\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0321\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0321\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0321","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们为书面语和口语引入了一种高性能命名实体识别(NER)模型。为了克服标注数据稀缺和领域转移带来的挑战,我们使用迁移学习来利用之前开发的 KorBERT 作为基础模型。我们还采用了一种元伪标签方法,使用带有标签和未标签数据的教师/学生框架。我们的模型有两处修改。首先,学生模型根据人类和伪标签数据的平均损失进行更新。其次,通过考虑反馈分数并仅在低于阈值(0.0005)时更新教师模型,减轻了噪声伪标签数据的影响。我们在口语领域实现了目标 NER 性能,并通过提出一种直接的回滚方法,在稀缺的人类标记数据基础上恢复到最佳模型,从而提高了书面语言领域的 NER 性能。通过调整命名实体字典中的标签向量权重,可以进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Named entity recognition using transfer learning and small human- and meta-pseudo-labeled datasets

We introduce a high-performance named entity recognition (NER) model for written and spoken language. To overcome challenges related to labeled data scarcity and domain shifts, we use transfer learning to leverage our previously developed KorBERT as the base model. We also adopt a meta-pseudo-label method using a teacher/student framework with labeled and unlabeled data. Our model presents two modifications. First, the student model is updated with an average loss from both human- and pseudo-labeled data. Second, the influence of noisy pseudo-labeled data is mitigated by considering feedback scores and updating the teacher model only when below a threshold (0.0005). We achieve the target NER performance in the spoken language domain and improve that in the written language domain by proposing a straightforward rollback method that reverts to the best model based on scarce human-labeled data. Further improvement is achieved by adjusting the label vector weights in the named entity dictionary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1