多通道超声波表面滚压后残余应力 (RS) 场的数学建模和有限元分析

4区 材料科学 Q2 Engineering Advances in Materials Science and Engineering Pub Date : 2024-02-16 DOI:10.1155/2024/4083427
Jinggan Shao, Zhanshu He, Genshang Wu, Zhi Zhang, Chao Li
{"title":"多通道超声波表面滚压后残余应力 (RS) 场的数学建模和有限元分析","authors":"Jinggan Shao, Zhanshu He, Genshang Wu, Zhi Zhang, Chao Li","doi":"10.1155/2024/4083427","DOIUrl":null,"url":null,"abstract":"In order to achieve the change rule of the induced residual stress (RS) field after multipass ultrasonic surface rolling (USR), a mathematical model of the induced residual stress (RS) field after multipass ultrasonic surface rolling is first established. Then, the coupling mechanisms of the RS field after dual-pass USR and multipass USR are analyzed, respectively. Subsequently, a finite element (FE) model is established, and the influence of the interval between two adjacent rolling paths <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.289 11.927\" width=\"13.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.294,3.132)\"></path></g></svg> is investigated. Finally, both the mathematical model and the FE model are experimentally verified. The results show that both the mathematical model and the FE model can predict the RS field after multipass USR. Two adjacent RS fields will couple with each other in their overlapping regions. For a relatively small interval <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.289 11.927\" width=\"13.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-77\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.294,3.132)\"><use xlink:href=\"#g50-84\"></use></g></svg>,</span> the RS field after multipass USR can be fully coupled, so as to form a uniform compressive RS layer. In this study, when <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.289 11.927\" width=\"13.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-77\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.294,3.132)\"><use xlink:href=\"#g50-84\"></use></g></svg> = 0.05 mm, the values of the surface compressive RS, the maximum compressive RS, the depth of the maximum compressive RS, and the depth of the compressive RS layer reach 426.71 MPa, 676.54 MPa, 0.05 mm, and 0.54 mm, respectively.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling and Finite Element Analysis of Residual Stress (RS) Field after Multipass Ultrasonic Surface Rolling\",\"authors\":\"Jinggan Shao, Zhanshu He, Genshang Wu, Zhi Zhang, Chao Li\",\"doi\":\"10.1155/2024/4083427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to achieve the change rule of the induced residual stress (RS) field after multipass ultrasonic surface rolling (USR), a mathematical model of the induced residual stress (RS) field after multipass ultrasonic surface rolling is first established. Then, the coupling mechanisms of the RS field after dual-pass USR and multipass USR are analyzed, respectively. Subsequently, a finite element (FE) model is established, and the influence of the interval between two adjacent rolling paths <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.289 11.927\\\" width=\\\"13.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.294,3.132)\\\"></path></g></svg> is investigated. Finally, both the mathematical model and the FE model are experimentally verified. The results show that both the mathematical model and the FE model can predict the RS field after multipass USR. Two adjacent RS fields will couple with each other in their overlapping regions. For a relatively small interval <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.289 11.927\\\" width=\\\"13.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-77\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.294,3.132)\\\"><use xlink:href=\\\"#g50-84\\\"></use></g></svg>,</span> the RS field after multipass USR can be fully coupled, so as to form a uniform compressive RS layer. In this study, when <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.289 11.927\\\" width=\\\"13.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-77\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.294,3.132)\\\"><use xlink:href=\\\"#g50-84\\\"></use></g></svg> = 0.05 mm, the values of the surface compressive RS, the maximum compressive RS, the depth of the maximum compressive RS, and the depth of the compressive RS layer reach 426.71 MPa, 676.54 MPa, 0.05 mm, and 0.54 mm, respectively.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4083427\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/4083427","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了实现多通道超声表面轧制(USR)后诱导残余应力(RS)场的变化规律,首先建立了多通道超声表面轧制后诱导残余应力(RS)场的数学模型。然后,分别分析了双通道 USR 和多通道 USR 后 RS 场的耦合机制。随后,建立了有限元(FE)模型,并研究了相邻两条轧制路径之间间隔的影响。最后,对数学模型和 FE 模型进行了实验验证。结果表明,数学模型和 FE 模型都能预测多通道 USR 后的 RS 场。两个相邻的 RS 场将在其重叠区域内相互耦合。对于相对较小的间隔,多路 USR 后的 RS 场可以完全耦合,从而形成均匀的压缩 RS 层。在本研究中,当 = 0.05 mm 时,表面压缩 RS 值、最大压缩 RS 值、最大压缩 RS 深度和压缩 RS 层深度分别达到 426.71 MPa、676.54 MPa、0.05 mm 和 0.54 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical Modeling and Finite Element Analysis of Residual Stress (RS) Field after Multipass Ultrasonic Surface Rolling
In order to achieve the change rule of the induced residual stress (RS) field after multipass ultrasonic surface rolling (USR), a mathematical model of the induced residual stress (RS) field after multipass ultrasonic surface rolling is first established. Then, the coupling mechanisms of the RS field after dual-pass USR and multipass USR are analyzed, respectively. Subsequently, a finite element (FE) model is established, and the influence of the interval between two adjacent rolling paths is investigated. Finally, both the mathematical model and the FE model are experimentally verified. The results show that both the mathematical model and the FE model can predict the RS field after multipass USR. Two adjacent RS fields will couple with each other in their overlapping regions. For a relatively small interval , the RS field after multipass USR can be fully coupled, so as to form a uniform compressive RS layer. In this study, when  = 0.05 mm, the values of the surface compressive RS, the maximum compressive RS, the depth of the maximum compressive RS, and the depth of the compressive RS layer reach 426.71 MPa, 676.54 MPa, 0.05 mm, and 0.54 mm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Materials Science and Engineering
Advances in Materials Science and Engineering Materials Science-General Materials Science
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to: -Chemistry and fundamental properties of matter -Material synthesis, fabrication, manufacture, and processing -Magnetic, electrical, thermal, and optical properties of materials -Strength, durability, and mechanical behaviour of materials -Consideration of materials in structural design, modelling, and engineering -Green and renewable materials, and consideration of materials’ life cycles -Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)
期刊最新文献
Evaluating Sisal Fiber-Reinforced Gypsum Composites for Water Absorption and Mechanical Performance Extraction and Characterization of Cellulose from Coffee Husk and Brewery’s Spent Grain Fibers Using Alkali-Hydrogen Peroxide Treatment Method Multiobjective Optimization of Hard Turning on OHNS Steel Using Desirability and TOPSIS Approaches Enhancing Communication Reliability: Designing Microwave Links for Bahir Dar-Woretta Connectivity Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1