{"title":"基于强化学习的蛇形机器人在复杂环境中的运动控制","authors":"Dong Zhang, Renjie Ju, Zhengcai Cao","doi":"10.1017/s0263574723001613","DOIUrl":null,"url":null,"abstract":"Snake robots can move flexibly due to their special bodies and gaits. However, it is difficult to plan their motion in multi-obstacle environments due to their complex models. To solve this problem, this work investigates a reinforcement learning-based motion planning method. To plan feasible paths, together with a modified deep Q-learning algorithm, a Floyd-moving average algorithm is proposed to ensure smoothness and adaptability of paths for snake robots’ passing. An improved path integral algorithm is used to work out gait parameters to control snake robots to move along the planned paths. To speed up the training of parameters, a strategy combining serial training, parallel training, and experience replaying modules is designed. Moreover, we have designed a motion planning framework consists of path planning, path smoothing, and motion planning. Various simulations are conducted to validate the effectiveness of the proposed algorithms.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning-based motion control for snake robots in complex environments\",\"authors\":\"Dong Zhang, Renjie Ju, Zhengcai Cao\",\"doi\":\"10.1017/s0263574723001613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snake robots can move flexibly due to their special bodies and gaits. However, it is difficult to plan their motion in multi-obstacle environments due to their complex models. To solve this problem, this work investigates a reinforcement learning-based motion planning method. To plan feasible paths, together with a modified deep Q-learning algorithm, a Floyd-moving average algorithm is proposed to ensure smoothness and adaptability of paths for snake robots’ passing. An improved path integral algorithm is used to work out gait parameters to control snake robots to move along the planned paths. To speed up the training of parameters, a strategy combining serial training, parallel training, and experience replaying modules is designed. Moreover, we have designed a motion planning framework consists of path planning, path smoothing, and motion planning. Various simulations are conducted to validate the effectiveness of the proposed algorithms.\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574723001613\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574723001613","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Reinforcement learning-based motion control for snake robots in complex environments
Snake robots can move flexibly due to their special bodies and gaits. However, it is difficult to plan their motion in multi-obstacle environments due to their complex models. To solve this problem, this work investigates a reinforcement learning-based motion planning method. To plan feasible paths, together with a modified deep Q-learning algorithm, a Floyd-moving average algorithm is proposed to ensure smoothness and adaptability of paths for snake robots’ passing. An improved path integral algorithm is used to work out gait parameters to control snake robots to move along the planned paths. To speed up the training of parameters, a strategy combining serial training, parallel training, and experience replaying modules is designed. Moreover, we have designed a motion planning framework consists of path planning, path smoothing, and motion planning. Various simulations are conducted to validate the effectiveness of the proposed algorithms.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.