基于强化学习的蛇形机器人在复杂环境中的运动控制

IF 1.9 4区 计算机科学 Q3 ROBOTICS Robotica Pub Date : 2024-02-12 DOI:10.1017/s0263574723001613
Dong Zhang, Renjie Ju, Zhengcai Cao
{"title":"基于强化学习的蛇形机器人在复杂环境中的运动控制","authors":"Dong Zhang, Renjie Ju, Zhengcai Cao","doi":"10.1017/s0263574723001613","DOIUrl":null,"url":null,"abstract":"Snake robots can move flexibly due to their special bodies and gaits. However, it is difficult to plan their motion in multi-obstacle environments due to their complex models. To solve this problem, this work investigates a reinforcement learning-based motion planning method. To plan feasible paths, together with a modified deep Q-learning algorithm, a Floyd-moving average algorithm is proposed to ensure smoothness and adaptability of paths for snake robots’ passing. An improved path integral algorithm is used to work out gait parameters to control snake robots to move along the planned paths. To speed up the training of parameters, a strategy combining serial training, parallel training, and experience replaying modules is designed. Moreover, we have designed a motion planning framework consists of path planning, path smoothing, and motion planning. Various simulations are conducted to validate the effectiveness of the proposed algorithms.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning-based motion control for snake robots in complex environments\",\"authors\":\"Dong Zhang, Renjie Ju, Zhengcai Cao\",\"doi\":\"10.1017/s0263574723001613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snake robots can move flexibly due to their special bodies and gaits. However, it is difficult to plan their motion in multi-obstacle environments due to their complex models. To solve this problem, this work investigates a reinforcement learning-based motion planning method. To plan feasible paths, together with a modified deep Q-learning algorithm, a Floyd-moving average algorithm is proposed to ensure smoothness and adaptability of paths for snake robots’ passing. An improved path integral algorithm is used to work out gait parameters to control snake robots to move along the planned paths. To speed up the training of parameters, a strategy combining serial training, parallel training, and experience replaying modules is designed. Moreover, we have designed a motion planning framework consists of path planning, path smoothing, and motion planning. Various simulations are conducted to validate the effectiveness of the proposed algorithms.\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574723001613\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574723001613","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

蛇形机器人因其特殊的身体和步态可以灵活移动。然而,由于蛇形机器人的模型复杂,在多障碍物环境中规划其运动十分困难。为了解决这个问题,本研究探讨了一种基于强化学习的运动规划方法。为了规划可行的路径,结合改进的深度 Q-learning 算法,提出了一种 Floyd 移动平均算法,以确保蛇形机器人通过路径时的平滑性和适应性。改进的路径积分算法用于计算步态参数,以控制蛇形机器人沿着规划的路径移动。为加快参数训练速度,我们设计了串行训练、并行训练和经验重放模块相结合的策略。此外,我们还设计了一个由路径规划、路径平滑和运动规划组成的运动规划框架。我们进行了各种模拟,以验证所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning-based motion control for snake robots in complex environments
Snake robots can move flexibly due to their special bodies and gaits. However, it is difficult to plan their motion in multi-obstacle environments due to their complex models. To solve this problem, this work investigates a reinforcement learning-based motion planning method. To plan feasible paths, together with a modified deep Q-learning algorithm, a Floyd-moving average algorithm is proposed to ensure smoothness and adaptability of paths for snake robots’ passing. An improved path integral algorithm is used to work out gait parameters to control snake robots to move along the planned paths. To speed up the training of parameters, a strategy combining serial training, parallel training, and experience replaying modules is designed. Moreover, we have designed a motion planning framework consists of path planning, path smoothing, and motion planning. Various simulations are conducted to validate the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
期刊最新文献
3D dynamics and control of a snake robot in uncertain underwater environment An application of natural matrices to the dynamic balance problem of planar parallel manipulators Control of stance-leg motion and zero-moment point for achieving perfect upright stationary state of rimless wheel type walker with parallel linkage legs Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters High accuracy hybrid kinematic modeling for serial robotic manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1