S$Ω$I:基于分数的 O-INFORMATION 估算

Mustapha Bounoua, Giulio Franzese, Pietro Michiardi
{"title":"S$Ω$I:基于分数的 O-INFORMATION 估算","authors":"Mustapha Bounoua, Giulio Franzese, Pietro Michiardi","doi":"arxiv-2402.05667","DOIUrl":null,"url":null,"abstract":"The analysis of scientific data and complex multivariate systems requires\ninformation quantities that capture relationships among multiple random\nvariables. Recently, new information-theoretic measures have been developed to\novercome the shortcomings of classical ones, such as mutual information, that\nare restricted to considering pairwise interactions. Among them, the concept of\ninformation synergy and redundancy is crucial for understanding the high-order\ndependencies between variables. One of the most prominent and versatile\nmeasures based on this concept is O-information, which provides a clear and\nscalable way to quantify the synergy-redundancy balance in multivariate\nsystems. However, its practical application is limited to simplified cases. In\nthis work, we introduce S$\\Omega$I, which allows for the first time to compute\nO-information without restrictive assumptions about the system. Our experiments\nvalidate our approach on synthetic data, and demonstrate the effectiveness of\nS$\\Omega$I in the context of a real-world use case.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S$Ω$I: Score-based O-INFORMATION Estimation\",\"authors\":\"Mustapha Bounoua, Giulio Franzese, Pietro Michiardi\",\"doi\":\"arxiv-2402.05667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of scientific data and complex multivariate systems requires\\ninformation quantities that capture relationships among multiple random\\nvariables. Recently, new information-theoretic measures have been developed to\\novercome the shortcomings of classical ones, such as mutual information, that\\nare restricted to considering pairwise interactions. Among them, the concept of\\ninformation synergy and redundancy is crucial for understanding the high-order\\ndependencies between variables. One of the most prominent and versatile\\nmeasures based on this concept is O-information, which provides a clear and\\nscalable way to quantify the synergy-redundancy balance in multivariate\\nsystems. However, its practical application is limited to simplified cases. In\\nthis work, we introduce S$\\\\Omega$I, which allows for the first time to compute\\nO-information without restrictive assumptions about the system. Our experiments\\nvalidate our approach on synthetic data, and demonstrate the effectiveness of\\nS$\\\\Omega$I in the context of a real-world use case.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.05667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.05667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析科学数据和复杂的多变量系统需要能捕捉多个随机变量之间关系的信息量。最近,人们开发了新的信息论度量,以克服经典度量(如互信息)仅限于考虑成对交互作用的缺点。其中,信息协同和冗余的概念对于理解变量之间的高阶依赖关系至关重要。基于这一概念的最突出、最通用的测量方法之一是 O-信息,它为量化多变量系统中的协同-冗余平衡提供了一种清晰、可扩展的方法。然而,它的实际应用仅限于简化的情况。在这项工作中,我们引入了 S$\Omega$I,它首次允许在不对系统进行限制性假设的情况下计算 O-信息。我们的实验在合成数据上验证了我们的方法,并证明了 S$\Omega$I 在实际应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S$Ω$I: Score-based O-INFORMATION Estimation
The analysis of scientific data and complex multivariate systems requires information quantities that capture relationships among multiple random variables. Recently, new information-theoretic measures have been developed to overcome the shortcomings of classical ones, such as mutual information, that are restricted to considering pairwise interactions. Among them, the concept of information synergy and redundancy is crucial for understanding the high-order dependencies between variables. One of the most prominent and versatile measures based on this concept is O-information, which provides a clear and scalable way to quantify the synergy-redundancy balance in multivariate systems. However, its practical application is limited to simplified cases. In this work, we introduce S$\Omega$I, which allows for the first time to compute O-information without restrictive assumptions about the system. Our experiments validate our approach on synthetic data, and demonstrate the effectiveness of S$\Omega$I in the context of a real-world use case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1