{"title":"功能层聚合物复合材料和混合功能层聚合物复合材料的机械磨损和侵蚀磨损研究","authors":"Shakuntala Ojha, Gujjala Raghavendra, Kaloori Prudhvidhar, Karuka Raja Narender Reddy, Vasavi Boggarapu","doi":"10.1007/s13726-024-01282-0","DOIUrl":null,"url":null,"abstract":"<div><p>The present study focuses on the mechanical and erosive wear properties of functionally-graded polymer materials (FGPMs) and functionally-graded hybrid composites. Polyester resin is used as a polymeric matrix, while titanium dioxide (TiO<sub>2</sub>) and aluminum (Al) as particles and glass fiber (GG) as fiber reinforcements are used in the composites. The samples are fabricated through the lay-up lamination technique. Initially, four-layered FGPMs were fabricated using TiO<sub>2</sub> and Al particles individually in weight percentages varying from 2 to 8% (by wt). Then, four-layered hybrid functionally-graded composites were prepared using 2–4% (by wt) Al and TiO<sub>2</sub> along with two layers of glass fibers. A comparison among functionally-graded materials and functionally-graded hybrid materials in terms of mechanical strength (tensile, flexural and interlaminar) and erosion behavior is evaluated on a universal testing machine and air jet erosion testing apparatus, respectively. The improved tensile strength is shown by aluminum-based functionally-graded and hybrid functionally-graded composites owing to their greater ductility. Nevertheless, titanium dioxide-based functional- graded and hybrid functional-graded composites exhibited greater flexural strength due to their high hardness. From the erosion results, Al and TiO<sub>2</sub> functional-graded composites revealed semi-ductile and semi-brittle behavior, respectively. Moreover, hybrid functional composites display altered material behavior at their extreme layers. Two layers of glass fiber (GG) with Al (2.4% by wt) filler functional composite achieved 1.91% maximum tensile strength compared to Al (2, 4, 6, 8% by wt) filler composite.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the mechanical and erosion wear of functionally-layered polymer composites and hybrid functionally-layered polymer composites\",\"authors\":\"Shakuntala Ojha, Gujjala Raghavendra, Kaloori Prudhvidhar, Karuka Raja Narender Reddy, Vasavi Boggarapu\",\"doi\":\"10.1007/s13726-024-01282-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study focuses on the mechanical and erosive wear properties of functionally-graded polymer materials (FGPMs) and functionally-graded hybrid composites. Polyester resin is used as a polymeric matrix, while titanium dioxide (TiO<sub>2</sub>) and aluminum (Al) as particles and glass fiber (GG) as fiber reinforcements are used in the composites. The samples are fabricated through the lay-up lamination technique. Initially, four-layered FGPMs were fabricated using TiO<sub>2</sub> and Al particles individually in weight percentages varying from 2 to 8% (by wt). Then, four-layered hybrid functionally-graded composites were prepared using 2–4% (by wt) Al and TiO<sub>2</sub> along with two layers of glass fibers. A comparison among functionally-graded materials and functionally-graded hybrid materials in terms of mechanical strength (tensile, flexural and interlaminar) and erosion behavior is evaluated on a universal testing machine and air jet erosion testing apparatus, respectively. The improved tensile strength is shown by aluminum-based functionally-graded and hybrid functionally-graded composites owing to their greater ductility. Nevertheless, titanium dioxide-based functional- graded and hybrid functional-graded composites exhibited greater flexural strength due to their high hardness. From the erosion results, Al and TiO<sub>2</sub> functional-graded composites revealed semi-ductile and semi-brittle behavior, respectively. Moreover, hybrid functional composites display altered material behavior at their extreme layers. Two layers of glass fiber (GG) with Al (2.4% by wt) filler functional composite achieved 1.91% maximum tensile strength compared to Al (2, 4, 6, 8% by wt) filler composite.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01282-0\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01282-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
A study on the mechanical and erosion wear of functionally-layered polymer composites and hybrid functionally-layered polymer composites
The present study focuses on the mechanical and erosive wear properties of functionally-graded polymer materials (FGPMs) and functionally-graded hybrid composites. Polyester resin is used as a polymeric matrix, while titanium dioxide (TiO2) and aluminum (Al) as particles and glass fiber (GG) as fiber reinforcements are used in the composites. The samples are fabricated through the lay-up lamination technique. Initially, four-layered FGPMs were fabricated using TiO2 and Al particles individually in weight percentages varying from 2 to 8% (by wt). Then, four-layered hybrid functionally-graded composites were prepared using 2–4% (by wt) Al and TiO2 along with two layers of glass fibers. A comparison among functionally-graded materials and functionally-graded hybrid materials in terms of mechanical strength (tensile, flexural and interlaminar) and erosion behavior is evaluated on a universal testing machine and air jet erosion testing apparatus, respectively. The improved tensile strength is shown by aluminum-based functionally-graded and hybrid functionally-graded composites owing to their greater ductility. Nevertheless, titanium dioxide-based functional- graded and hybrid functional-graded composites exhibited greater flexural strength due to their high hardness. From the erosion results, Al and TiO2 functional-graded composites revealed semi-ductile and semi-brittle behavior, respectively. Moreover, hybrid functional composites display altered material behavior at their extreme layers. Two layers of glass fiber (GG) with Al (2.4% by wt) filler functional composite achieved 1.91% maximum tensile strength compared to Al (2, 4, 6, 8% by wt) filler composite.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.